- #1
espen180
- 834
- 2
Let's say I have two coordinate system in first-rank tensor form:
[tex]x^{\mu}=\left[\begin{matrix} x \\ y \\ z \end{matrix}\right][/tex] and [tex]x^{\mu^\prime}=\left[\begin{matrix} x^\prime \\ y^\prime \\ z^\prime \end{matrix}\right][/tex]
and I want to translate the origin of [tex]x^{\mu^\prime}[/tex] from the origin to point (a,b,c) in [tex]x^{\mu}[/tex]. I can to this by using a second-rank transformation tensor [tex]{T^{\mu^\prime}}_{\mu}[/tex] such that [tex]x^{\mu^\prime}={T^{\mu^\prime}}_{\mu}x^{\mu}[/tex].
Would I be "cheating" if I said that [tex]{T^{\mu^\prime}}_{\mu}[/tex] can be written as [tex]{T^{\mu^\prime}}_{\mu}=\left[\begin{matrix} 1+\frac{a}{x} & 0 & 0 \\ 0 & 1+\frac{b}{y} & 0 \\ 0 & 0 & 1+\frac{c}{z}\end{matrix}\right][/tex]? Because sure enough, if you carry out the multiplication, you find that [tex]x^\prime=x+a[/tex] and so on, but since [tex]{T^{\mu^\prime}}_{\mu}[/tex] includes the original coordinates, it is not independent of [tex]x^{\mu}[/tex].
Is it therefore neccesary to represent the three-vector above as a four-vector [tex]x^{\mu}=[x,y,z,1]^T[/tex] and
[tex]{T^{\mu^\prime}}_{\mu}=\left[\begin{matrix} 1 & 0 & 0 & a \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 1\end{matrix}\right][/tex]
in order for the transformation to be "rigorous" enough?
Thanks for any help.
[tex]x^{\mu}=\left[\begin{matrix} x \\ y \\ z \end{matrix}\right][/tex] and [tex]x^{\mu^\prime}=\left[\begin{matrix} x^\prime \\ y^\prime \\ z^\prime \end{matrix}\right][/tex]
and I want to translate the origin of [tex]x^{\mu^\prime}[/tex] from the origin to point (a,b,c) in [tex]x^{\mu}[/tex]. I can to this by using a second-rank transformation tensor [tex]{T^{\mu^\prime}}_{\mu}[/tex] such that [tex]x^{\mu^\prime}={T^{\mu^\prime}}_{\mu}x^{\mu}[/tex].
Would I be "cheating" if I said that [tex]{T^{\mu^\prime}}_{\mu}[/tex] can be written as [tex]{T^{\mu^\prime}}_{\mu}=\left[\begin{matrix} 1+\frac{a}{x} & 0 & 0 \\ 0 & 1+\frac{b}{y} & 0 \\ 0 & 0 & 1+\frac{c}{z}\end{matrix}\right][/tex]? Because sure enough, if you carry out the multiplication, you find that [tex]x^\prime=x+a[/tex] and so on, but since [tex]{T^{\mu^\prime}}_{\mu}[/tex] includes the original coordinates, it is not independent of [tex]x^{\mu}[/tex].
Is it therefore neccesary to represent the three-vector above as a four-vector [tex]x^{\mu}=[x,y,z,1]^T[/tex] and
[tex]{T^{\mu^\prime}}_{\mu}=\left[\begin{matrix} 1 & 0 & 0 & a \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 1\end{matrix}\right][/tex]
in order for the transformation to be "rigorous" enough?
Thanks for any help.