- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
We define $\delta_{h,-,2} f(x) :=- \left( \delta_{h,-}+\frac{h}{2} \delta_{h,-}^2 \right) f(x)=\frac{1}{2h} \left( -f(x-2h)+4f(x-h)-3f(x)\right)$.
Let $f \in C^3[a,b]$. Then:
$$| \delta_{h,-,2} f(x)- f'(x)|\leq h^2 ||f'''||_{\infty}$$
I have tried the following:
$$f(x-h)=f(x)-h f'(x)+\frac{h^2}{2} f''(x)-\frac{h^3}{6} f'''(\xi_1), \xi_1 \in (x-h,x) \\ f(x-2h)=f(x)-2hf'(x)+2h^2 f''(x)-\frac{4}{3} h^3 f'''(\xi_2), \xi_2 \in (x-2h,x)$$
So $\delta_{h,-,2} f(x)=-f'(x)+\frac{2}{3} h^2 f'''(\xi_2)-\frac{1}{3} h^3 f'''(\xi_1)$.
But how can we say something about $| \delta_{h,-,2} f(x)- f'(x)|$ now that we have $\delta_{h,-,2} f(x)=-f'(x)+ \dots$ instead of $\delta_{h,-,2} f(x)=f'(x)+ \dots$ ? (Thinking)
We define $\delta_{h,-,2} f(x) :=- \left( \delta_{h,-}+\frac{h}{2} \delta_{h,-}^2 \right) f(x)=\frac{1}{2h} \left( -f(x-2h)+4f(x-h)-3f(x)\right)$.
Let $f \in C^3[a,b]$. Then:
$$| \delta_{h,-,2} f(x)- f'(x)|\leq h^2 ||f'''||_{\infty}$$
I have tried the following:
$$f(x-h)=f(x)-h f'(x)+\frac{h^2}{2} f''(x)-\frac{h^3}{6} f'''(\xi_1), \xi_1 \in (x-h,x) \\ f(x-2h)=f(x)-2hf'(x)+2h^2 f''(x)-\frac{4}{3} h^3 f'''(\xi_2), \xi_2 \in (x-2h,x)$$
So $\delta_{h,-,2} f(x)=-f'(x)+\frac{2}{3} h^2 f'''(\xi_2)-\frac{1}{3} h^3 f'''(\xi_1)$.
But how can we say something about $| \delta_{h,-,2} f(x)- f'(x)|$ now that we have $\delta_{h,-,2} f(x)=-f'(x)+ \dots$ instead of $\delta_{h,-,2} f(x)=f'(x)+ \dots$ ? (Thinking)
Last edited: