- #1
mathdad
- 1,283
- 1
MarkFL said:I would observe that:
\(\displaystyle \left(1\pm\sqrt{5}\right)^3=1\pm3\sqrt{5}+3\cdot5\pm5\sqrt{5}=16\pm8\sqrt{5}=8\left(2\pm\sqrt{5}\right)\)
Hence:
\(\displaystyle 2\pm\sqrt{5}=\left(\frac{1\pm\sqrt{5}}{2}\right)^3\)
RTCNTC said:What would the algebra look like if I take the cube root on both sides? Is it tedious?
I like Serena said:Let's assume that the cube root is in the same Ring of Quadratic Integers.
That is, we can write the cube root $\sqrt[3]{2\pm \sqrt 5}$ as $a+b\sqrt 5$.
Then to take the cube root, we can solve a and b from:
$$(a+b\sqrt 5)^3 = 2 \pm \sqrt 5$$
We have:
$$(a+b\cdot\sqrt 5)^3 = a^3+3a^2b\cdot\sqrt 5 + 3ab^2\cdot 5 + b^2\cdot 5\sqrt 5 = a(a^2+15b^2) + b(3a^2 + 5b^2)\sqrt 5$$
So:
$$\begin{cases}a(a^2+15b^2) = 2 \\ b(3a^2 + 5b^2) = \pm 1
\end{cases} \tag 1$$
Unfortunately this is quite tedious to solve. (Worried)
Luckily we can draw on the theory of Quadratic Integers to make it a bit easier.
That's by using the norm $N$, which is defined as $N(x+y\sqrt 5)=x^2-5y^2$.
The norm $N(a+b\sqrt 5)$, when raised to the power of 3, must then be equal to $N(2\pm \sqrt 5)$.
Thus, we get the additional identity:
$$N(a+b\sqrt 5)^3 = N(2\pm \sqrt 5) \quad\Rightarrow\quad (a^2 - 5b^2)^3 = 2^2 - 5(\pm 1)^2 = -1$$
This implies:
$$a^2-5b^2 = -1 \quad\Rightarrow\quad 5b^2 = a^2+1 \tag 2$$
Substituting in (1) yields:
$$a(a^2+3\cdot 5b^2)= a(a^2+3(a^2+1))=4a^3+3a=2 \quad\Rightarrow\quad 4a^3+3a-2=0$$
Next, from the Rational Root Theorem we know that any rational root must be one of:
$$\pm 2, \pm 1, \pm\frac 12, \pm\frac 14$$
And indeed, $a=\frac 12$ fits.
Substituting back into (2) yields:
$$5b^2 = \Big(\frac 12\Big)^2+1 = \frac 54 \quad\Rightarrow\quad b=\pm\frac 12$$
So we find that:
$$\sqrt[3]{2\pm \sqrt 5} = \frac 12 \pm \frac 12 \sqrt 5 \tag 3$$TL;DR: Yep, it's tedious to take the cube root. (Angel)
A radical equation 2 is an equation that contains a radical expression, such as a square root, cube root, or other root, on one or both sides of the equals sign.
The main difference between a radical equation 1 and a radical equation 2 is the number of radical expressions present in the equation. A radical equation 1 has only one radical expression, while a radical equation 2 has two or more.
To solve a radical equation 2, you must isolate the radical expression on one side of the equation and then square both sides to eliminate the radical. This process may need to be repeated if there are multiple radical expressions in the equation.
Yes, a radical equation 2 can have any number of radical expressions on either side of the equation. However, the process of solving the equation becomes more complicated as the number of radical expressions increases.
Yes, when solving a radical equation 2, you must check for any restrictions on the variables that would make the radical expression undefined. These restrictions may lead to extraneous solutions that are not valid for the original equation.