- #1
Ad VanderVen
- 169
- 13
- TL;DR Summary
- ##x## is a function ##f(\alpha)## of ##\alpha## en ##y## is a function ##g(\alpha)## of ##\alpha##. How can ##y## be written as a function of ##x##?
##x## is a function ##f(\alpha)## of ##\alpha##:
$$\displaystyle x\, = \,\ln \left( {{\rm e}^{ 0.6931471806\,{\alpha}^{-1}}}-{{\rm e}^{ 0.2876820724\,{\alpha}^{-1}}} \right)$$
and ##y## is a function ##g(\alpha)## of ##\alpha##:
$$\displaystyle y\, = \,\ln \left( {{\rm e}^{ 1.386294361\,{\alpha}^{-1}}}-{{\rm e}^{ 0.6931471806\,{\alpha}^{-1}}}\\
\mbox{} \right)$$
How can ##y## be written as a function of ##x##?
$$\displaystyle x\, = \,\ln \left( {{\rm e}^{ 0.6931471806\,{\alpha}^{-1}}}-{{\rm e}^{ 0.2876820724\,{\alpha}^{-1}}} \right)$$
and ##y## is a function ##g(\alpha)## of ##\alpha##:
$$\displaystyle y\, = \,\ln \left( {{\rm e}^{ 1.386294361\,{\alpha}^{-1}}}-{{\rm e}^{ 0.6931471806\,{\alpha}^{-1}}}\\
\mbox{} \right)$$
How can ##y## be written as a function of ##x##?
Last edited: