- #1
- 2,704
- 19
Homework Statement
Show that the electric field from an electric dipole for r>>d is:
[tex]\vec{E} = \frac{Qd}{4\pi\epsilon_0 r^3}(2\cos \theta \hat{r} + \sin \theta \hat{\theta})[/tex]
Homework Equations
Electric Field of a Point Charge: [tex]\vec{E}=\frac{Q}{4\pi\epsilon_0r^2}[/tex]
The Attempt at a Solution
First thing first, I can't use Electric potential to solve this, I need to use fields right from the start.OK, here we go:
[tex]\vec{E}=\vec{E_+}+\vec{E_-}[/tex][tex]\vec{E}=\frac{Q}{4\pi\epsilon_0}(\frac{\vec{r_+}}{r_+^3}-\frac{\vec{r_-}}{r_-^3})[/tex]
[tex] \vec{E}=\frac{Q}{4\pi\epsilon_0}(\frac{r_-^3\vec{r_+}-r_+^3\vec{r_-}}{(r_+r_-)^3})[/tex]
Now assume r+ and r- are close to the same length, since r>>d:
[tex]\vec{E}=\frac{Q}{4\pi\epsilon_0r^3}(\vec{r_+}-\vec{r_-})[/tex]
Ok, this is where I get stuck. I know the length of r+ - r- should be dcos(theta) in spherical coordinates, where theta is the angle from the +z axis., but I can't get the unit vector into terms of [tex]\hat{r}[/tex] and [tex]\hat{\theta}[/tex].
Any hints would be appreciated. Thanks!
Last edited: