- #1
Maiko
- 2
- 0
financial model using integral
Find the amount in a savings aacount after one year if the initial balance in the account was $1,000, if the interest is paid continuously into the account at a nominal rate of 10% per annum, compounded continuously, and if the account is being continuously depleted at the rate of y^2/1000000 dollars per year, where y=y(t) is the balance in the account after t years. How large can the account grow? How long will it take the account grow to half this balance?
Just like other problems of this sort, I set up the following equation:
dy/dt=0.1y-y^2/1000000
integrating factor u(t)
dy/dt*u(t)=0.1y*u(t)-y^2/1000000*u(t)
d/dt(yu(t))=dy/dt*u(t)+du/dt*y
now, what do I do? I have never done a question involving y^2. Help, please!
Find the amount in a savings aacount after one year if the initial balance in the account was $1,000, if the interest is paid continuously into the account at a nominal rate of 10% per annum, compounded continuously, and if the account is being continuously depleted at the rate of y^2/1000000 dollars per year, where y=y(t) is the balance in the account after t years. How large can the account grow? How long will it take the account grow to half this balance?
Just like other problems of this sort, I set up the following equation:
dy/dt=0.1y-y^2/1000000
integrating factor u(t)
dy/dt*u(t)=0.1y*u(t)-y^2/1000000*u(t)
d/dt(yu(t))=dy/dt*u(t)+du/dt*y
now, what do I do? I have never done a question involving y^2. Help, please!