- #1
chica911
- 1
- 0
1. Let A , B and C be sets. Prove that (A-B) ∩ C = (A ∩ C)- B = (A ∩ C) – (B ∩ C).
3. Proof:
1st part: Let A, B and C be sets where (A-B) ∩ C. Let X be a particular, but arbitrary element of C. Since C and (A-B) ∩, X € (A-B) and X € C. Therefore, X € A but X ∉ B. Since X is an element of A and C, A ∩ C and since X ∉ B, (A ∩ C)-B. Therefore (A-B) ∩ C=(A ∩ C)-B.
2nd part: Let A, B and C be sets where (A ∩ C)- B.
3rd part: Suppose (A-B) ∩ C=(A ∩ C)-B and (A ∩ C)- B = (A ∩ C) – (B ∩ C) By the transitive property (A-B) ∩ C=(A ∩ C) – (B ∩ C) and therefore (A-B) ∩ C = (A ∩ C)- B = (A ∩ C) – (B ∩ C).
The 2nd part is what I need help with. I am not sure how to prove (A ∩ C)- B = (A ∩ C) – (B ∩ C).
please help
3. Proof:
1st part: Let A, B and C be sets where (A-B) ∩ C. Let X be a particular, but arbitrary element of C. Since C and (A-B) ∩, X € (A-B) and X € C. Therefore, X € A but X ∉ B. Since X is an element of A and C, A ∩ C and since X ∉ B, (A ∩ C)-B. Therefore (A-B) ∩ C=(A ∩ C)-B.
2nd part: Let A, B and C be sets where (A ∩ C)- B.
3rd part: Suppose (A-B) ∩ C=(A ∩ C)-B and (A ∩ C)- B = (A ∩ C) – (B ∩ C) By the transitive property (A-B) ∩ C=(A ∩ C) – (B ∩ C) and therefore (A-B) ∩ C = (A ∩ C)- B = (A ∩ C) – (B ∩ C).
The 2nd part is what I need help with. I am not sure how to prove (A ∩ C)- B = (A ∩ C) – (B ∩ C).
please help