- #1
anemone
Gold Member
MHB
POTW Director
- 3,883
- 115
Let $a,\,b$ be positive integers with $b>3$ and $a^2+b^4=2((a-6)^2+(b+1)^2)$.
Prove that $a^2+b^4=1994$.
Prove that $a^2+b^4=1994$.