- #1
Silver Bolt
- 8
- 0
Prove $Cos^6A+Sin^6A=1-3 \hspace{0.2cm}Sin^2 A\hspace{0.02cm}Cos^2A$
So far,
$Cos^6A+Sin^6A=1-3 \hspace{0.2cm}Sin^2 A\hspace{0.02cm}Cos^2A$
$L.H.S=(Cos^2A)^3+(Sin^2A)^3$
$=(Cos^2A+Sin^2A)(Cos^4A-Cos^2ASin^2A+Sin^4A)$
$=\underbrace{(Cos^2A+Sin^2A)}_{\text{1}}(Cos^4A-Cos^2ASin^2A+Sin^4A) $
$=1(Cos^4A-Cos^2ASin^2A+Sin^4A)$
Can someone help from here?
So far,
$Cos^6A+Sin^6A=1-3 \hspace{0.2cm}Sin^2 A\hspace{0.02cm}Cos^2A$
$L.H.S=(Cos^2A)^3+(Sin^2A)^3$
$=(Cos^2A+Sin^2A)(Cos^4A-Cos^2ASin^2A+Sin^4A)$
$=\underbrace{(Cos^2A+Sin^2A)}_{\text{1}}(Cos^4A-Cos^2ASin^2A+Sin^4A) $
$=1(Cos^4A-Cos^2ASin^2A+Sin^4A)$
Can someone help from here?