- #1
anemone
Gold Member
MHB
POTW Director
- 3,883
- 115
Problem:
Find the value of $\displaystyle \frac{1^4+2007^4+2008^4}{1^2+2007^2+2008^2}$.
My Attempt:
For the numerator, I expand them using the Binomial Theorem and get:
$\displaystyle 1^4+2007^4+2008^4$
$\displaystyle=1+(2000+7)^4+(2000+8)^4$
$\displaystyle
=1+2000^4+4(2000)^3(7)^1+6(2000)^2(7)^2+4(2000)^1(7)^3+7^4$
$\displaystyle
+2000^4+4(2000)^3(8)^1+6(2000)^2(8)^2+4(2000)^1(8)^3+8^4$
$\displaystyle
=2(2000^4)+60(2000)^3+678(2000)^2+3420(2000)+6498$I do the same for the denominator and get:
$\displaystyle 1^2+2007^2+2008^2$
$\displaystyle=1+(2000+7)^2+(2000+8)^2$
$\displaystyle=1+(2000)^2+14(2000)+49+(2000)^2+16(2000)+64$
$\displaystyle=2(2000^2)+30(2000)+114$
I noticed that if I square the denominator, I get twice the value as the numerator, let's see...
$\displaystyle (1^2+2007^2+2008^2)^2$
$\displaystyle
=4(2000^4)+120(2000)^3+1356(2000)^2+6840(2000)+12996$
$\displaystyle
=2(2(2000^4)+60(2000)^3+678(2000)^2+3420(2000)+6498)$So, we can say that
$\displaystyle \frac{1^4+2007^4+2008^4}{(1^2+2007^2+2008^2)^2}= \frac{1}{2}$
Therefore,
$\displaystyle \frac{1^4+2007^4+2008^4}{1^2+2007^2+2008^2}=\frac{1}{2}(1^2+2007^2+2008^2)=\frac{1}{2} (2(2000^2)+30(2000)+114)=4,030,057$My question is, are there any other approaches to solve this problem?
Thanks in advance.
Find the value of $\displaystyle \frac{1^4+2007^4+2008^4}{1^2+2007^2+2008^2}$.
My Attempt:
For the numerator, I expand them using the Binomial Theorem and get:
$\displaystyle 1^4+2007^4+2008^4$
$\displaystyle=1+(2000+7)^4+(2000+8)^4$
$\displaystyle
=1+2000^4+4(2000)^3(7)^1+6(2000)^2(7)^2+4(2000)^1(7)^3+7^4$
$\displaystyle
+2000^4+4(2000)^3(8)^1+6(2000)^2(8)^2+4(2000)^1(8)^3+8^4$
$\displaystyle
=2(2000^4)+60(2000)^3+678(2000)^2+3420(2000)+6498$I do the same for the denominator and get:
$\displaystyle 1^2+2007^2+2008^2$
$\displaystyle=1+(2000+7)^2+(2000+8)^2$
$\displaystyle=1+(2000)^2+14(2000)+49+(2000)^2+16(2000)+64$
$\displaystyle=2(2000^2)+30(2000)+114$
I noticed that if I square the denominator, I get twice the value as the numerator, let's see...
$\displaystyle (1^2+2007^2+2008^2)^2$
$\displaystyle
=4(2000^4)+120(2000)^3+1356(2000)^2+6840(2000)+12996$
$\displaystyle
=2(2(2000^4)+60(2000)^3+678(2000)^2+3420(2000)+6498)$So, we can say that
$\displaystyle \frac{1^4+2007^4+2008^4}{(1^2+2007^2+2008^2)^2}= \frac{1}{2}$
Therefore,
$\displaystyle \frac{1^4+2007^4+2008^4}{1^2+2007^2+2008^2}=\frac{1}{2}(1^2+2007^2+2008^2)=\frac{1}{2} (2(2000^2)+30(2000)+114)=4,030,057$My question is, are there any other approaches to solve this problem?
Thanks in advance.