- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)Let the (linear) differential equation $y'+ay=b(x)$ where $a>0, b$ continuous on $[0,+\infty)$ and $\lim_{x \to +\infty} b(x)=l \in \mathbb{R}$.
Show that each solution of the differential equation goes to $\frac{l}{a}$ while $x \to +\infty$,
i.e. if $\phi$ is any solution of the differential equation, show that $\lim_{x \to +\infty} \phi(x)=\frac{l}{a}$.
That's what I have tried:
The solution of the differential equation will be of the form:
$\phi(x)=ce^{-ax}+e^{-ax} \int_0^x e^{at}b(t) dt$
$\lim_{x \to +\infty} c e^{-ax}=0$
So, $\lim_{x \to +\infty} \phi(x)=\lim_{x \to +\infty} e^{-ax} \int_0^x e^{at}b(t)dt$How can we calculate the limit $\lim_{x \to +\infty} e^{-ax} \int_0^x e^{at}b(t)dt$ ? (Thinking)
Show that each solution of the differential equation goes to $\frac{l}{a}$ while $x \to +\infty$,
i.e. if $\phi$ is any solution of the differential equation, show that $\lim_{x \to +\infty} \phi(x)=\frac{l}{a}$.
That's what I have tried:
The solution of the differential equation will be of the form:
$\phi(x)=ce^{-ax}+e^{-ax} \int_0^x e^{at}b(t) dt$
$\lim_{x \to +\infty} c e^{-ax}=0$
So, $\lim_{x \to +\infty} \phi(x)=\lim_{x \to +\infty} e^{-ax} \int_0^x e^{at}b(t)dt$How can we calculate the limit $\lim_{x \to +\infty} e^{-ax} \int_0^x e^{at}b(t)dt$ ? (Thinking)