- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hi! (Smile)
Let the function
$$\epsilon_p: \mathbb{Z} \rightarrow \mathbb{Z}_p$$
$$x \mapsto (\overline{x_n} )_{n \in \mathbb{N}_0}$$
where $\overline{x_n} \equiv x \pmod {p^n}$
There are some examples:
$$\epsilon_7 (173)=(173,173,173, \dots, 173, \dots)=(5,26,173,173, \dots)$$
$$\epsilon_7(-1)=(-1,-1,-1, \dots)=(6,48,342,2400, \dots)$$
$$\epsilon_7(2)=(2,2, \dots, 2, \dots)$$
$$\sqrt{\epsilon_7(2)}=(3,10,108,2016, \dots)$$
Could you explain me how we found $\sqrt{\epsilon_7(2)}$ ? (Thinking)
Let the function
$$\epsilon_p: \mathbb{Z} \rightarrow \mathbb{Z}_p$$
$$x \mapsto (\overline{x_n} )_{n \in \mathbb{N}_0}$$
where $\overline{x_n} \equiv x \pmod {p^n}$
There are some examples:
$$\epsilon_7 (173)=(173,173,173, \dots, 173, \dots)=(5,26,173,173, \dots)$$
$$\epsilon_7(-1)=(-1,-1,-1, \dots)=(6,48,342,2400, \dots)$$
$$\epsilon_7(2)=(2,2, \dots, 2, \dots)$$
$$\sqrt{\epsilon_7(2)}=(3,10,108,2016, \dots)$$
Could you explain me how we found $\sqrt{\epsilon_7(2)}$ ? (Thinking)