- #1
Potatochip911
- 318
- 3
Homework Statement
Prove ##A\setminus(B\cap C)=(A\setminus B)\cup(A\setminus C)##
Homework Equations
3. The Attempt at a Solution [/B]
We will show that every element in ##A\setminus(B\cap C)## is contained in ##(A\setminus B)## or ##(A\setminus C)##. If ##x\in A\setminus (B\cup C)## then ##x\in A##, ##x\notin B## and ##x\notin C##, thus ##x\in(A\setminus B)## and ##x\in(A\setminus C)## now I'm assuming the next step is to say that this shows that ##x\in(A\setminus B)\cup(A\setminus C)## but I'm confused as to why we this is a union instead of an intersection. If ##x## is not in B and C then why do we use and/or instead of just and? I am obviously interpreting this incorrectly so hopefully someone can clarify.