- #1
Decentralized
- 2
- 0
Summary:: AmbientNoise + AntiNoise combined calculation
I am having trouble with this question:
Noise cancelling headphones use both passive (insulated earphones) and active (electronic “anti-noise”) methods to nullify ambient noise. One task of a sound engineer is to design low-energy anti-noise signals that help cancel ambient noise. Consider anti-noise that is to be combined (to cancel) ambient-noise.
AmbientNoise = 100 sin(ω t) Amplitude 100 and frequency ω .
AntiNoise = A sin(ω t + φ) Amplitude A is a positive number. −π < φ ≤ π
1. Choose AntiNoise so the sum AmbientNoise + AntiNoise has a combined amplitude of 20 (much quieter than AmbientNoise). Guess/choose the phase φ that minimizes A (minimum A decreases hearing fatigue and energy consumption).
AmbientNoise = 100 sin(ω t)
AntiNoise = A sin(ω t + φ)
A = ____ φ = _____rad
CombinedSound = ____sin( ____ )
2. It is difficult for AntiNoise to be perfectly out of phase with AmbientNoise (i.e., difficult for φ to be exactly π). Consider AntiNoise = 100 sin(ω t + π + δ). Determine the maximum δ between 0 and π to create a combined noise/anti-noise sound of amplitude 20, i.e.,
CombinedSound = 100 sin(ω t) + 100 sin(ω t + π + δ) = 20 sin(ω t + SomePhase)
Show δ is governed by the following equation – and solve for δ.
sqr(2 − 2 cos(δ))= 0.2
δ ≈ 0.2 rad ≈ 11.5◦
For the first question, if I want to cancell ambient noise with anti noise down to 20, I am assuming it is going to be -80 sin(ω t)?
But A cannot be a negative number. I am not sure how to approach this problem. We've only learned Asin(x) + Bsin(x) = C sin(x+φ) where C = sqr( A^2 + B^2).
Appreciate your input here.
I am having trouble with this question:
Noise cancelling headphones use both passive (insulated earphones) and active (electronic “anti-noise”) methods to nullify ambient noise. One task of a sound engineer is to design low-energy anti-noise signals that help cancel ambient noise. Consider anti-noise that is to be combined (to cancel) ambient-noise.
AmbientNoise = 100 sin(ω t) Amplitude 100 and frequency ω .
AntiNoise = A sin(ω t + φ) Amplitude A is a positive number. −π < φ ≤ π
1. Choose AntiNoise so the sum AmbientNoise + AntiNoise has a combined amplitude of 20 (much quieter than AmbientNoise). Guess/choose the phase φ that minimizes A (minimum A decreases hearing fatigue and energy consumption).
AmbientNoise = 100 sin(ω t)
AntiNoise = A sin(ω t + φ)
A = ____ φ = _____rad
CombinedSound = ____sin( ____ )
2. It is difficult for AntiNoise to be perfectly out of phase with AmbientNoise (i.e., difficult for φ to be exactly π). Consider AntiNoise = 100 sin(ω t + π + δ). Determine the maximum δ between 0 and π to create a combined noise/anti-noise sound of amplitude 20, i.e.,
CombinedSound = 100 sin(ω t) + 100 sin(ω t + π + δ) = 20 sin(ω t + SomePhase)
Show δ is governed by the following equation – and solve for δ.
sqr(2 − 2 cos(δ))= 0.2
δ ≈ 0.2 rad ≈ 11.5◦
For the first question, if I want to cancell ambient noise with anti noise down to 20, I am assuming it is going to be -80 sin(ω t)?
But A cannot be a negative number. I am not sure how to approach this problem. We've only learned Asin(x) + Bsin(x) = C sin(x+φ) where C = sqr( A^2 + B^2).
Appreciate your input here.