- #1
boneill3
- 127
- 0
Homework Statement
We consider P2 the vector space of all real polynomials of degree at most 2.
<f,g> = [itex]f(-1)g(-1)+f(0)g(0)+f(1)g(1)[/itex]
Use the Gram-Schmidt procedure to construct an orthonormal basis for P2 from the basis {1,t,t2}
Homework Equations
[itex]
v_{j+1}:=u_{j+1}-\sum_{i=1}^{j}<<u_{j+1},e_{i}>>e_{i}[/itex]
[itex]
e_1 = \frac{u_1}{||u_{1}|| }[/itex]
The Attempt at a Solution
I have a basis [itex] u_1 = 1, u_2 = t, u_3 = t^2[/itex]
so
[itex]
e_1 = \frac{u_1}{||u_{1}|| }[/itex]
[itex]
e_1 = \frac{1}{\sqrt{2}} [/itex]
is the next step
[itex]
v_{2}:=u_{2}-\sum_{i=1}^{j}<<u_{2},e_{i}>>e_{i}[/itex]
[itex]= t - << t,\frac{1}{\sqrt{2}} >>\frac{1}{\sqrt{2}}[/itex]
My question is how do I calculate the inner product [itex]<< t,\frac{1}{\sqrt{2}} >>[/itex]
do I need to plug in the value of f(t) into
<f,g> = [itex]f(-1)g(-1)+f(0)g(0)+f(1)g(1)[/itex]
and does g() become [itex]
g(e_1) = g(\frac{1}{\sqrt{2}}) [/itex]
regards