- #1
azatkgz
- 186
- 0
It's easy question,but I don't know whether I solved it correctly.
Calculate the length of the curve given by
[tex]r=a\sin^3 \frac{\theta}{3}[/tex]
in polar coordinates. Here, a > 0 is some number.
[tex]l=\int \sqrt{r^2(\theta)+(\frac{dr}{d\theta})^2}d\theta[/tex]
[tex]l=\int \sqrt{a^2 \sin^6\frac{\theta}{3}+a^2\sin^4\frac{\theta}{3}\cos^2\frac{\theta}{3}}\theta[/tex]
[tex]l=a\int \sin^2\frac{\theta}{3}d\theta[/tex]
for [tex]0<\frac{2\theta}{3}<2\pi[/tex]
[tex]l=\frac{a}{2}\int_{0}^{3\pi}(1-\cos\frac{2\theta}{3})d\theta[/tex]
[tex]l=\frac{3\pi}{2}[/tex]
Homework Statement
Calculate the length of the curve given by
[tex]r=a\sin^3 \frac{\theta}{3}[/tex]
in polar coordinates. Here, a > 0 is some number.
Homework Equations
[tex]l=\int \sqrt{r^2(\theta)+(\frac{dr}{d\theta})^2}d\theta[/tex]
The Attempt at a Solution
[tex]l=\int \sqrt{a^2 \sin^6\frac{\theta}{3}+a^2\sin^4\frac{\theta}{3}\cos^2\frac{\theta}{3}}\theta[/tex]
[tex]l=a\int \sin^2\frac{\theta}{3}d\theta[/tex]
for [tex]0<\frac{2\theta}{3}<2\pi[/tex]
[tex]l=\frac{a}{2}\int_{0}^{3\pi}(1-\cos\frac{2\theta}{3})d\theta[/tex]
[tex]l=\frac{3\pi}{2}[/tex]