- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hello!
Having the transformation t=τ+p, I want to calculate the jacobian $\frac{J(t,τ)}{J(τ,p)}$.
Isn't it $$ \frac{J(t,τ)}{J(τ,p)}=\begin{vmatrix}
\frac{ \vartheta t}{\vartheta τ}& \frac{\vartheta t}{\vartheta p} \\
\frac{\vartheta τ}{\vartheta τ} & \frac{\varthetaτ }{\vartheta p}
\end{vmatrix}=\begin{vmatrix}
1& 1 \\
1 & -1
\end{vmatrix}=-1-1=-2$$? But the absolute value of the Jacobian for the convolution is $1$..What did I wrong?
Having the transformation t=τ+p, I want to calculate the jacobian $\frac{J(t,τ)}{J(τ,p)}$.
Isn't it $$ \frac{J(t,τ)}{J(τ,p)}=\begin{vmatrix}
\frac{ \vartheta t}{\vartheta τ}& \frac{\vartheta t}{\vartheta p} \\
\frac{\vartheta τ}{\vartheta τ} & \frac{\varthetaτ }{\vartheta p}
\end{vmatrix}=\begin{vmatrix}
1& 1 \\
1 & -1
\end{vmatrix}=-1-1=-2$$? But the absolute value of the Jacobian for the convolution is $1$..What did I wrong?