- #1
alexmahone
- 304
- 0
Prove that if a subsequence of a Cauchy sequence converges then so does the original Cauchy sequence.
I'm assuming that we're not allowed to use the fact that every Cauchy sequence converges. Here's my attempt:
Let $\displaystyle\{s_n\}$ be the original Cauchy sequence. Let $\displaystyle \{s_{n_k}\}$ be the convergent subsequence.
Given $\epsilon>0$,
$\exists N_1\in\mathbb{N}$ such that $\displaystyle|s_n-s_m|<\frac{\epsilon}{2}$ whenever $n\ge N_1$ and $m\ge N_1$.
$\{s_{n_k}\}$ converges, say, to $L$.
So $\exists N_2\in\mathbb{N}$ such that $\displaystyle|s_{n_k}-L|<\frac{\epsilon}{2}$ whenever $k\ge N_2$.
$\displaystyle|s_n-L|=|s_n-s_{n_k}+s_{n_k}-L|\le |s_n-s_{n_k}|+|s_{n_k}-L|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$ whenever $n\ge N_1$, $n_k\ge N_1$ and $k\ge N_2$.
How do I wrap up this proof by finding the $N$ such that $|s_n-L|<\epsilon$ holds whenever $n\ge N$?
I'm assuming that we're not allowed to use the fact that every Cauchy sequence converges. Here's my attempt:
Let $\displaystyle\{s_n\}$ be the original Cauchy sequence. Let $\displaystyle \{s_{n_k}\}$ be the convergent subsequence.
Given $\epsilon>0$,
$\exists N_1\in\mathbb{N}$ such that $\displaystyle|s_n-s_m|<\frac{\epsilon}{2}$ whenever $n\ge N_1$ and $m\ge N_1$.
$\{s_{n_k}\}$ converges, say, to $L$.
So $\exists N_2\in\mathbb{N}$ such that $\displaystyle|s_{n_k}-L|<\frac{\epsilon}{2}$ whenever $k\ge N_2$.
$\displaystyle|s_n-L|=|s_n-s_{n_k}+s_{n_k}-L|\le |s_n-s_{n_k}|+|s_{n_k}-L|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$ whenever $n\ge N_1$, $n_k\ge N_1$ and $k\ge N_2$.
How do I wrap up this proof by finding the $N$ such that $|s_n-L|<\epsilon$ holds whenever $n\ge N$?