- #1
Alexx1
- 86
- 0
I have to find: [tex]\int_{0}^{2\pi}\sqrt{t^2+2} dt[/tex]
I found that [tex]\int \sqrt{t^2+2} dt = \frac{t\sqrt{t^2+2}}{2} - arcsin(\frac{t}{\sqrt{2}}) + c[/tex]
But when I fill in [tex]2\pi[/tex] I get: [tex]\frac{2\pi \sqrt{4\pi ^2+2}}{2}- arcsin(\frac{2\pi }{\sqrt{2}})[/tex]
but [tex]arcsin(\frac{2\pi }{\sqrt{2}})[/tex] doesn't exist..
Have I done something wrong?
I found that [tex]\int \sqrt{t^2+2} dt = \frac{t\sqrt{t^2+2}}{2} - arcsin(\frac{t}{\sqrt{2}}) + c[/tex]
But when I fill in [tex]2\pi[/tex] I get: [tex]\frac{2\pi \sqrt{4\pi ^2+2}}{2}- arcsin(\frac{2\pi }{\sqrt{2}})[/tex]
but [tex]arcsin(\frac{2\pi }{\sqrt{2}})[/tex] doesn't exist..
Have I done something wrong?