- #1
ineedhelpnow
- 651
- 0
like these problems for example. if it converges then I am supposed to find the limit.
$a_n=\frac{\sin\left({2n}\right)}{1+\sqrt{n}}$
$\left|\sin\left({2n}\right)\right| \le 1$
$a_n=\frac{(-3)^n}{n!}$
$\left|a_n\right| > 0$
$a_n=\frac{\sin\left({2n}\right)}{1+\sqrt{n}}$
$\left|\sin\left({2n}\right)\right| \le 1$
$a_n=\frac{(-3)^n}{n!}$
$\left|a_n\right| > 0$
Last edited: