- #1
kalish1
- 99
- 0
Can someone here help me establish that $\lim\limits_{t \rightarrow \infty} S(t) = \Lambda/\mu$,
given that:
$\frac{dS}{dt}=\Lambda-\mu S-\beta \frac{S}{N}(H+C+C_1+C_2)-\tau \frac{S}{N}(T+C)$
$N(t)=S(t)+H(t)+C(t)+C_1(t)+C_2(t)$
$\Lambda,\beta,\tau > 0$
$\text{As} \ \ t \rightarrow \infty, \ T,H,C,C_1,C_2 \rightarrow 0?$
_________________________________________________________________________________________
**My attempt:**
$\frac{dS}{dt}=\Lambda-\mu S-\beta \frac{S}{N}(H+C+C_1+C_2)-\tau \frac{S}{N}(T+C) \leq \Lambda-\mu S.$ Clearly if $S > \Lambda/\mu,$ then $dS/dt<0.$ Since $dS/dt$ is bounded by $\Lambda-\mu S,$ a standard comparison theorem can be used to show that $S(t) \leq S(0)e^{-\mu t} + \frac{\Lambda}{\mu}(1-e^{-\mu t}).$ In particular, $S(0) \leq \frac{\Lambda}{\mu} \Rightarrow S(t) \leq \frac{\Lambda}{\mu}.$
Also, since $T,H,C,C_1,C_2 \rightarrow 0 \ \ \text{as} \ \ t \rightarrow \infty,$
$$(\forall \delta>0)(\exists T>0)\left(t \geq T \implies \left|-\beta\frac{S}{N}(H+C+C_1+C_2)-\tau\frac{S}{N}(T+C)\right|<\frac{\delta}{2}\right).$$ If we take $S \geq \frac{\Lambda-\delta}{\mu},$ then $\Lambda-\mu S \leq \delta.$
Hence $\frac{dS}{dt}=\Lambda-\mu S-\beta \frac{S}{N}(H+C+C_1+C_2)-\tau \frac{S}{N}(T+C) \leq \frac{3\delta}{2}.$
If we take $S \leq \frac{\Lambda+\delta}{\mu},$ then $\Lambda-\mu S \geq -\delta.$
Hence $\frac{dS}{dt}=\Lambda-\mu S-\beta \frac{S}{N}(H+C+C_1+C_2)-\tau \frac{S}{N}(T+C) \geq -\frac{3\delta}{2}.$
_________________________________________________________________________________________
**Question:** How do I conclude?
I have crossposted this question here: differential equations - How to show that $\lim\limits_{t \rightarrow \infty} S(t) = \Lambda/\mu$? - Mathematics Stack Exchange
given that:
$\frac{dS}{dt}=\Lambda-\mu S-\beta \frac{S}{N}(H+C+C_1+C_2)-\tau \frac{S}{N}(T+C)$
$N(t)=S(t)+H(t)+C(t)+C_1(t)+C_2(t)$
$\Lambda,\beta,\tau > 0$
$\text{As} \ \ t \rightarrow \infty, \ T,H,C,C_1,C_2 \rightarrow 0?$
_________________________________________________________________________________________
**My attempt:**
$\frac{dS}{dt}=\Lambda-\mu S-\beta \frac{S}{N}(H+C+C_1+C_2)-\tau \frac{S}{N}(T+C) \leq \Lambda-\mu S.$ Clearly if $S > \Lambda/\mu,$ then $dS/dt<0.$ Since $dS/dt$ is bounded by $\Lambda-\mu S,$ a standard comparison theorem can be used to show that $S(t) \leq S(0)e^{-\mu t} + \frac{\Lambda}{\mu}(1-e^{-\mu t}).$ In particular, $S(0) \leq \frac{\Lambda}{\mu} \Rightarrow S(t) \leq \frac{\Lambda}{\mu}.$
Also, since $T,H,C,C_1,C_2 \rightarrow 0 \ \ \text{as} \ \ t \rightarrow \infty,$
$$(\forall \delta>0)(\exists T>0)\left(t \geq T \implies \left|-\beta\frac{S}{N}(H+C+C_1+C_2)-\tau\frac{S}{N}(T+C)\right|<\frac{\delta}{2}\right).$$ If we take $S \geq \frac{\Lambda-\delta}{\mu},$ then $\Lambda-\mu S \leq \delta.$
Hence $\frac{dS}{dt}=\Lambda-\mu S-\beta \frac{S}{N}(H+C+C_1+C_2)-\tau \frac{S}{N}(T+C) \leq \frac{3\delta}{2}.$
If we take $S \leq \frac{\Lambda+\delta}{\mu},$ then $\Lambda-\mu S \geq -\delta.$
Hence $\frac{dS}{dt}=\Lambda-\mu S-\beta \frac{S}{N}(H+C+C_1+C_2)-\tau \frac{S}{N}(T+C) \geq -\frac{3\delta}{2}.$
_________________________________________________________________________________________
**Question:** How do I conclude?
I have crossposted this question here: differential equations - How to show that $\lim\limits_{t \rightarrow \infty} S(t) = \Lambda/\mu$? - Mathematics Stack Exchange