- #1
Dustinsfl
- 2,281
- 5
$\displaystyle f(z) = \frac{4 + 3z}{(z + 1)(z + 2)^2}$
How do I find the power series?
I know that
$\displaystyle\frac{1}{z+1} = \frac{1}{1-(-z)} = \sum_{n}^{\infty}(-z)^n$
and
$\displaystyle\frac{1}{(z+2)^2} = \frac{d}{dz} \frac{-1}{z+2} = \frac{d}{dz} \frac{-1}{1 - (-z-1)} = \sum_{n}^{\infty} -n(-z-1)^{n-1}$
But how do I do the above expression?
How do I find the power series?
I know that
$\displaystyle\frac{1}{z+1} = \frac{1}{1-(-z)} = \sum_{n}^{\infty}(-z)^n$
and
$\displaystyle\frac{1}{(z+2)^2} = \frac{d}{dz} \frac{-1}{z+2} = \frac{d}{dz} \frac{-1}{1 - (-z-1)} = \sum_{n}^{\infty} -n(-z-1)^{n-1}$
But how do I do the above expression?