MHB How do I factor a binomial with a coefficient of 4?

  • Thread starter Thread starter slowle4rner
  • Start date Start date
  • Tags Tags
    Binomial Factoring
AI Thread Summary
To factor the binomial 4y^3 + 4, first factor out the common coefficient of 4, resulting in 4(y^3 + 1). The expression y^3 + 1 can be further factored using the sum of cubes formula, yielding 4(y + 1)(y^2 - y + 1). Although the coefficient 4 is not a perfect cube, it can remain factored out without affecting the overall expression. The final, most factored form is 4(y + 1)(y^2 - y + 1), which is the preferred answer for clarity and completeness.
slowle4rner
Messages
2
Reaction score
0
I'm having trouble factoring the following binomial... can someone try to point me in the right direction please?

4y^3+4

It has been 7 years since I took algebra and I am trying to get my review done. This one just does not make sense to me right now...

Thanks!
 
Mathematics news on Phys.org
First factor the 4 out, to get:

$$4y^3+4=4\left(y^3+1 \right)=4\left(y^3+1^3 \right)$$

Now apply the sum of cubes formula:

$$a^3+b^3=(a+b)\left(a^2-ab+b^2 \right)$$

What do you get?
 
So...A^3+b^3 = (a+b)(a^2-ab+b^2)

4y^3+4 = 4(y^3+1) = 4(y^3+1^3) = 4(y+1)(y^2-y+1)

That's basically what I came up with. I guess I am confused because I 4 is not a perfect cube and I didn't realize you could factor out the 4 and work the problem from there. But I suppose this makes sense assuming that I can multiply in the four and then multiply (4y+4)(y^2-y+1) or multiply 4(y+1)(y^2-y+1) and distribute the 4.

Would I be correct to presume that 4(y+1)(y^2-y+1) is the most factored and appropriate answer? That would seem to make sense to me...

Thanks for the help. I wasn't seeing it. Gratitude.
 
slowle4rner said:
So...[math]a^3+b^3 = (a+b)(a^2-ab+b^2)[/math]

[math]4y^3+4 = 4(y^3+1) = 4(y^3+1^3) = 4(y+1)(y^2-y+1)[/math]

That's basically what I came up with. I guess I am confused because I 4 is not a perfect cube and I didn't realize you could factor out the 4 and work the problem from there. But I suppose this makes sense assuming that I can multiply in the four and then multiply $$(4y+4)(y^2-y+1)$$ or multiply $$4(y+1)(y^2-y+1)$$ and distribute the 4.

The 4 is a bit of a red herring because, as you said, it's not a perfect cube but you can leave that alone out the front. You could say $$(4y+4)(y^2-y+1)$$ (as well as $$(y+1)(4y^2-4y+4)$$) but it's good form to leave it fully factored which means not distributing the four. If you ever do exams they usually want it fully factored.

Would I be correct to presume that 4(y+1)(y^2-y+1) is the most factored and appropriate answer? That would seem to make sense to me...

Thanks for the help. I wasn't seeing it. Gratitude.

Yes, that is the correct answer.
 
Even if you were not able to factor that "4" out, it just a number! If it had been, say, x^3+ 4 you could write it as x^3+(\sqrt[3]{4})^3 and use that same fornula.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Replies
8
Views
5K
Replies
15
Views
5K
Replies
3
Views
3K
Replies
6
Views
2K
Replies
2
Views
1K
Replies
4
Views
2K
Back
Top