How do I find cos and sin values without a calculator?

  • MHB
  • Thread starter Casio1
  • Start date
In summary, the conversation discusses finding the values of cosine and sine for an angle of -180 degrees by plotting a point on a circle. The conversation mentions using parametric equations and the unit circle for simplicity. It also touches on the concepts of periodicity and even and odd functions. The conclusion is that the values of cosine and sine for -180 degrees are -1 and 0 respectively.
  • #1
Casio1
86
0
Please refer to the diagram.

I am asked to find cos - 1800 and sin -1800 by plotting a point p on a circle.

OK I don't understand the following before I begin to answer.

How do I know where to start to draw the circles?

I have the x and y axis. I know that anti-clockwise rotation is positive and clockwise is negative.

If I look first at cos - 1800

I know I am going to draw a semi circle in the clockwise direction, which will represent 1800 but show as - 1800 on the diagram.

I am confused how I draw the sin -1800 and am assuming that I draw the semi circle in a anti-clockwise direction labelled also - 1800 to end up with a circle.

I also don't understand from a drawing how I am supposed to know that cos - 1800 = - 1, and sin - 1800 = 0

From first principles and not looking at the calculator, how would I know that these values are right, I could have drawn the semi-circles from x = 2 or 3 etc?

Please advise if you can.

Kind regards

Casio
 

Attachments

  • Sin and cosine definitions.png
    Sin and cosine definitions.png
    2.5 KB · Views: 49
Mathematics news on Phys.org
  • #2
For simplicity use the unit circle (radius=1) in your diagrams
I'd use parametric equations in this case to split your axes into $x = \cos(t) \text{ and } y = \sin(t)$.

You've correctly put point P on the graph so what is the value of x at -180? What about y? The values will be equal to $\cos(-180)$ and $\sin(-180)$ respectively.
 
  • #3
SuperSonic4 said:
For simplicity use the unit circle (radius=1) in your diagrams
I'd use parametric equations in this case to split your axes into $x = \cos(t) \text{ and } y = \sin(t)$.

You've correctly put point P on the graph so what is the value of x at -180? What about y? The values will be equal to $\cos(-180)$ and $\sin(-180)$ respectively.

As I am just learning this from first principles my foundation understanding of the subject is a little unstable at the moment, so I would like to keep things as simple as possible if I we can. Parametric equations might be getting a little too involved just at the moment thanks.

So referring to what you advise above and in conjunction with the diagram, point P is positioned at - x, the point would be using your idea of the radius = 1 being cos - 1800 = - 1

The y-axis or y value when x = - 1 must be that y = 0 with reference to the diagram.

So in conclusion;

cos - 1800 = - 1, and sin - 1800 = 0

Thanks

Casio(Smile)
 
  • #4
Casio said:
As I am just learning this from first principles my foundation understanding of the subject is a little unstable at the moment, so I would like to keep things as simple as possible if I we can. Parametric equations might be getting a little too involved just at the moment thanks.

So referring to what you advise above and in conjunction with the diagram, point P is positioned at - x, the point would be using your idea of the radius = 1 being cos - 1800 = - 1

The y-axis or y value when x = - 1 must be that y = 0 with reference to the diagram.

So in conclusion;

cos - 1800 = - 1, and sin - 1800 = 0

Thanks

Casio(Smile)

Parametric equations is a fancy way of splitting the x and y axes into components. It enables you to say that whatever the x value is then that is equal to the value of $\cos(t)$ (t is just a variable) and the y value is $\sin(t)$

In this case because P is at (-1,0) then $\cos(-180) = x$ and $\sin(-180) = y$

Without knowing what you've studied so far it's hard to suggest a method of working out. For example you (can) use the unit circle to prove periodicity so you can't say that $\sin(-180) = \sin(-180+360)$. Have you covered even and odd functions (see spoilers for what I mean)
  • An even function is where $f(-x) = f(x)$. Examples are $f(x) = x^2$ and, more thematically appropriate $f(x) = \cos(x)$
  • An odd function is where $f(-x) = -f(x)$. Examples include $f(x) = x^3$ and $f(x) = \sin(x)$

You'd use these functions to say that $\cos(-180)= \cos(180)$ and work out the positive angle
 
  • #5
SuperSonic4 said:
Parametric equations is a fancy way of splitting the x and y axes into components. It enables you to say that whatever the x value is then that is equal to the value of $\cos(t)$ (t is just a variable) and the y value is $\sin(t)$

In this case because P is at (-1,0) then $\cos(-180) = x$ and $\sin(-180) = y$

Without knowing what you've studied so far it's hard to suggest a method of working out. For example you (can) use the unit circle to prove periodicity so you can't say that $\sin(-180) = \sin(-180+360)$. Have you covered even and odd functions (see spoilers for what I mean)
  • An even function is where $f(-x) = f(x)$. Examples are $f(x) = x^2$ and, more thematically appropriate $f(x) = \cos(x)$
  • An odd function is where $f(-x) = -f(x)$. Examples include $f(x) = x^3$ and $f(x) = \sin(x)$

You'd use these functions to say that $\cos(-180)= \cos(180)$ and work out the positive angle

Hi, yes very briefly but a lot of revision to do on it to get a solid foundation.

Kind regards

Casio
 

FAQ: How do I find cos and sin values without a calculator?

What are sines and cosines?

Sines and cosines are mathematical functions that are used to describe the relationship between the angles and sides of a right triangle.

Why do we need to find sines and cosines?

Finding sines and cosines is important in various fields such as mathematics, physics, and engineering. These functions can help us solve problems involving angles and sides of a triangle, and can also be used to model periodic phenomena.

How do we find sines and cosines?

Sines and cosines can be found using a scientific calculator or by using mathematical formulas. The sine of an angle is equal to the length of the side opposite the angle divided by the length of the hypotenuse. The cosine of an angle is equal to the length of the adjacent side divided by the length of the hypotenuse.

What is the relationship between sines and cosines?

The sine and cosine functions are complementary to each other, meaning that the sine of an angle is equal to the cosine of the complementary angle, and vice versa. This is because in a right triangle, the sine and cosine are the ratios of the opposite and adjacent sides, respectively.

Can we use sines and cosines for non-right triangles?

Yes, we can use sines and cosines for non-right triangles by using the Law of Sines and Law of Cosines. These laws are used to find the angles and sides of any triangle, not just right triangles.

Back
Top