- #1
renyikouniao
- 41
- 0
find the length of a curve given by:
f(x)=integral(upper bound: x lower bound: 0) (cos^2(x)+4cos(x)+1)^0.5 dx
Here's my solution:
I use the equation L=integral ( upper bound: a lower bound: b ) sqrt[1+(f'(x))^2]
f'(x)=(cos^2(x)+4cos(x)+1)^0.5
1+[f'(x)]^2=2+cos^(x)+4cos(x)=[cos(x)+2]^2-2
L=integral( upper bound: x lower bound: 0 ) [2+cos^2(x)+4cos(x)]^0.5
This is where I am stuck...Am I right so far?
f(x)=integral(upper bound: x lower bound: 0) (cos^2(x)+4cos(x)+1)^0.5 dx
Here's my solution:
I use the equation L=integral ( upper bound: a lower bound: b ) sqrt[1+(f'(x))^2]
f'(x)=(cos^2(x)+4cos(x)+1)^0.5
1+[f'(x)]^2=2+cos^(x)+4cos(x)=[cos(x)+2]^2-2
L=integral( upper bound: x lower bound: 0 ) [2+cos^2(x)+4cos(x)]^0.5
This is where I am stuck...Am I right so far?