- #1
TMO
- 45
- 1
Let
## \begin{align}M =\begin{pmatrix} 2& -3& 0 \\ 3& -4& 0 \\ -2& 2& 1 \end{pmatrix} \end{align}. ##
Here is how I think the JCF is found.
STEP 1: Find the characteristic polynomial
It's ## \chi(\lambda) = (\lambda + 1)^3 ##
STEP 2: Make an AMGM table and write an integer partition equation
The AM is given by looking at the power. The GM is found by finding the nullspace for each eigenvalue. For this matrix this is the table:
which gives the integer partition equation ## J_{1, \lambda_{-1}} + J_{2, \lambda_{-1}} = 3 ##. Because there's only one integer partition possible (up to permutation: remember that the JCF is unique only up to permutation not in general), we can guess the JCF is
## \begin{align}J_M =\begin{pmatrix} -1& 1& 0 \\ 0& -1& 0 \\ 0& 0& -1 \end{pmatrix} \end{align}. ##
But I don't know how to compute the transition matrix. I know it involves generalized eigenvectors. Can someone help me?
## \begin{align}M =\begin{pmatrix} 2& -3& 0 \\ 3& -4& 0 \\ -2& 2& 1 \end{pmatrix} \end{align}. ##
Here is how I think the JCF is found.
STEP 1: Find the characteristic polynomial
It's ## \chi(\lambda) = (\lambda + 1)^3 ##
STEP 2: Make an AMGM table and write an integer partition equation
The AM is given by looking at the power. The GM is found by finding the nullspace for each eigenvalue. For this matrix this is the table:
Code:
+-----+------+------+
| λ | AM | GM |
+-----+------+------+
| -1 | 3 | 2 |
+-----+------+------+
which gives the integer partition equation ## J_{1, \lambda_{-1}} + J_{2, \lambda_{-1}} = 3 ##. Because there's only one integer partition possible (up to permutation: remember that the JCF is unique only up to permutation not in general), we can guess the JCF is
## \begin{align}J_M =\begin{pmatrix} -1& 1& 0 \\ 0& -1& 0 \\ 0& 0& -1 \end{pmatrix} \end{align}. ##
But I don't know how to compute the transition matrix. I know it involves generalized eigenvectors. Can someone help me?