- #1
interxavier
- 18
- 0
Homework Statement
I'm asked to find the magnitude of a complex function R(jw) = 1 + exp(-jw) + exp(-j2w) + exp(-j3w) + exp(-j4w)
[itex]R(jω) = 1 + \exp{(-jω)} + \exp{(-j2ω)} + \exp{(-j3ω)} + \exp{(-j4ω)}[/itex]
where [tex]ω[/tex] is the angular frequency [tex]j[/tex] is the imaginary number [tex]j = \sqrt{-1}[/tex] and [tex]\exp(-jnw)[/tex] is a complex sinusoid.
Homework Equations
[itex]R(jω) = 1 + \exp{(-jω)} + \exp{(-j2ω)} + \exp{(-j3ω)} + \exp{(-j4ω)}[/itex]
The Attempt at a Solution
So what I did was:
[itex]|R(jω)| = |1 + \exp{(-jω)} + \exp{(-j2ω)} + \exp{(-j3ω)} + \exp{(-j4ω)}|[/itex]
and I don't know how to proceed from here. Do we have to do it like this:
[tex]= |1| + |\exp(-jω)| + |\exp(-j2ω)| + |\exp(-j3ω)| + |\exp(-j4ω)|[/tex]
[itex]= 1 + 1 + 1 + 1 + 1[/itex]
[tex]= 5[/tex]
?