How do I get the relation T_n(t)=Q_n(t)A_n(t)?

  • MHB
  • Thread starter mathmari
  • Start date
  • Tags
    Relation
In summary, the conversation discusses the use of Fourier series to find the general solution of the problem $u_t=u_{xx}+f(x,t)$ with boundary and initial conditions. The solution involves using Variation of Parameters and finding a particular solution by trying $A_n(t)$ times the eigenfunction. The relation $T_n(t)=Q_n(t)A_n(t)$ is derived through this method.
  • #1
mathmari
Gold Member
MHB
5,049
7
Hey! :eek:

Having the following problem:
$$(1): u_t=u_{xx}+f(x,t), 0<x<L, t>0$$
$$u(0,t)=u(L,t)=0, t>0$$
$$u(x,0)=0, 0<x<L$$
$$f(0,t)=f(L,t)=0, t>0$$

we do the following to find the general solution:

We write the function $f(x,t)$ as a Fourier series:
$$(2): f(x,t)=\sum_{n=1}^{\infty}{F_n(t) \sin{(\frac{n \pi x}{L})}}, F_n(t)=\frac{2}{L} \int_0^L f(x,t) \in{(\frac{n \pi x}{L})}dx$$

We write also $u(x,t)$ as a Fourier series:
$$(3): u(x,t)=\sum_{n=1}^{\infty}{T_n(t) \sin{(\frac{n \pi x}{L})}}, T_n(t)=\frac{2}{L} \int_0^L u(x,t) \sin{(\frac{n \pi x}{L})}dx$$

Replacing the relations $(2),(3)$ in $(1)$ we get:
$$(4):T_n'(t)+(\frac{n \pi}{L})^2 T_n(t)=F_n(t), n=1,2, \dots$$

The solution of the homogeneous $T_n'(t)+(\frac{n \pi}{L})^2 T_n(t)=0$ is:
$$T_n(t)=e^{-(\frac{n \pi}{L})^2t}=Q(t)$$
$$T_n(t)=Q_n(t)A_n(t)$$

So replacing this at the relation $(4)$ we get:
$$Q_n'A_n+Q_nA_n'+(\frac{n \pi}{L})^2Q_nA_n=F_n \Rightarrow Q_nA_n'=F_n \Rightarrow A_n'=\frac{F_n}{Q_n} \Rightarrow A_n'(t)=F_n(t) e^{(\frac{n \pi}{L})^2t} $$
So $$A_n(t)=\int_0^t F_n(s) e^{(\frac{n \pi}{L})^2s}ds$$

Therefore, $$(9): T_n(t)=\int_0^t F_n(s) e^{-(\frac{n \pi}{L})^2(t-s)}ds$$

So the solution is the relation $(3)$ and the coefficient $T_n(t)$ are given from the relation $(9)$.That is what I have in my notes.

When I solve the homogeneous $T_n'(t)+(\frac{n \pi}{L})^2 T_n(t)=0$, I get the following solution:
$$T_n(t)=D_n e^{-(\frac{n \pi}{L})^2t}$$
$D_n$ does not depend from $t$, does it?
How do I get the relation $T_n(t)=Q_n(t)A_n(t)$ ?? (Wondering)
 
Physics news on Phys.org
  • #2
Hey! (Happy)

mathmari said:
How do I get the relation $T_n(t)=Q_n(t)A_n(t)$ ?? (Wondering)

I believe the method Variation of Parameters is applied here.

The actual solution of the homogeneous ODE is some constant $A_n$ times the eigenfunction.
To find a particular solution of the in-homogeneous ODE, we try $A_n(t)$ times the eigenfunction.
 
  • #3
I like Serena said:
Hey! (Happy)
I believe the method Variation of Parameters is applied here.

The actual solution of the homogeneous ODE is some constant $A_n$ times the eigenfunction.
To find a particular solution of the in-homogeneous ODE, we try $A_n(t)$ times the eigenfunction.

Ahaa..! Ok! Thank you very much! (Happy)
 

FAQ: How do I get the relation T_n(t)=Q_n(t)A_n(t)?

How do I solve for T_n(t)?

To solve for T_n(t), you can use the formula T_n(t) = Q_n(t)A_n(t). This means that T_n(t) is equal to the product of Q_n(t) and A_n(t). You will need to have values for both Q_n(t) and A_n(t) in order to solve for T_n(t).

What is the relationship between T_n(t), Q_n(t), and A_n(t)?

The relationship between T_n(t), Q_n(t), and A_n(t) is that T_n(t) is equal to the product of Q_n(t) and A_n(t). In other words, T_n(t) is the result of multiplying Q_n(t) and A_n(t) together. This relationship is important to understand when trying to solve for T_n(t).

How do I calculate Q_n(t) and A_n(t)?

To calculate Q_n(t) and A_n(t), you will need to have values for T_n(t) and the other variables involved in the equation. Once you have these values, you can plug them into the equation T_n(t) = Q_n(t)A_n(t) and solve for Q_n(t) and A_n(t) using algebraic methods.

Can I use a calculator to solve for T_n(t)?

Yes, you can use a calculator to solve for T_n(t) as long as you have all the necessary values for Q_n(t) and A_n(t). Make sure to use the correct order of operations when entering the equation into the calculator.

How can I use T_n(t) in my scientific research?

T_n(t) can be used in scientific research as a way to represent a relationship between two variables, Q_n(t) and A_n(t). This equation can be used to make predictions, analyze data, and understand the behavior of the system being studied.

Back
Top