- #1
David Koufos
- 9
- 4
- Homework Statement
- Given ##M = \begin{pmatrix}
2 & 2\\
2 & -1
\end{pmatrix}##, find the eigenvalues and eigenvectors and use them to find the matrix which gives the deformation relative to the new axes.
- Relevant Equations
- ##CMC^{T} = D##,
C is the matrix whose columns are the unit eigenvectors derived from M,
D is a diagonal matrix which gives the deformation relative to the new axes,
Remember ##C^{T} = C^{-1}##, meaning C is orthogonal.
For
##M = \begin{pmatrix}
2 & 2\\
2 & -1
\end{pmatrix}##
I found the characteristic equation:
##( λ - 3 )( λ + 2)
\therefore λ = 3,-2##Going back we multiply
$$\begin{pmatrix}
2 - \lambda & 2\\
2 & -1 - \lambda
\end{pmatrix}\begin{pmatrix} x\\ y \end{pmatrix}$$
Which gives
\begin{matrix}
2x - \lambda x + 2y = 0\\
2x - y - \lambda y = 0
\end{matrix}
Now plugging in ##\lambda_{1}## and ##\lambda_{2}## we get
\begin{matrix}
-x_{1} + 2y_{1} = 0\\
2x_{1} - 4y_{1} = 0
\end{matrix}
\begin{matrix}
4x_{2} + 2y_{2} = 0\\
2x_{2} + y_{2} = 0
\end{matrix}
Using this system of equations I derived
##\left( 2, 1 \right )## & ##\left( -1, 2 \right )## for the eigenvectors. My question comes from this.
Moving on, the unit eigenvectors are
\begin{bmatrix}
\dfrac{2}{\sqrt{5}}& , \dfrac{1}{\sqrt{5}}
\end{bmatrix} and
\begin{bmatrix}
\dfrac{-1}{\sqrt{5}}& , \dfrac{2}{\sqrt{5}}
\end{bmatrix}The matrix C which is composed of the unit eigenvectors as columns is
$$C = \begin{pmatrix}
\dfrac{2}{\sqrt{5}} & \dfrac{-1}{\sqrt{5}}\\
\dfrac{1}{\sqrt{5}} & \dfrac{2}{\sqrt{5}}
\end{pmatrix}$$
and
$$C^{T} = \begin{pmatrix}
\dfrac{2}{\sqrt{5}} & \dfrac{1}{\sqrt{5}}\\
\dfrac{-1}{\sqrt{5}} & \dfrac{2}{\sqrt{5}}
\end{pmatrix}$$
But when I perform the multiplication I get
$$CMC^{T} = \begin{pmatrix}
\dfrac{-1}{5} & \dfrac{12}{5}\\
\dfrac{12}{5} & \dfrac{6}{5}
\end{pmatrix}$$ which is not a diagonal matrix.
I used maxima to compare answers and realize why my answer wasn't right. Maxima found for eigen vectors
##[ 2, 1 ] [ 1, -2]## whereas I have ##[ 2, 1] [ -1, 2]##.
When using the eigen vectors the computer found, I get
##CMC^{T} = \begin{pmatrix}
3 & 0\\
0 & -2
\end{pmatrix}## which is the solution I'm looking for.
My problem is that my eigen vectors satisfy the characteristic equation so why don't I get the same answer. For future problems how do I really know if my eigen vectors are right, or if they're off by a factor of -1?
##M = \begin{pmatrix}
2 & 2\\
2 & -1
\end{pmatrix}##
I found the characteristic equation:
##( λ - 3 )( λ + 2)
\therefore λ = 3,-2##Going back we multiply
$$\begin{pmatrix}
2 - \lambda & 2\\
2 & -1 - \lambda
\end{pmatrix}\begin{pmatrix} x\\ y \end{pmatrix}$$
Which gives
\begin{matrix}
2x - \lambda x + 2y = 0\\
2x - y - \lambda y = 0
\end{matrix}
Now plugging in ##\lambda_{1}## and ##\lambda_{2}## we get
\begin{matrix}
-x_{1} + 2y_{1} = 0\\
2x_{1} - 4y_{1} = 0
\end{matrix}
\begin{matrix}
4x_{2} + 2y_{2} = 0\\
2x_{2} + y_{2} = 0
\end{matrix}
Using this system of equations I derived
##\left( 2, 1 \right )## & ##\left( -1, 2 \right )## for the eigenvectors. My question comes from this.
Moving on, the unit eigenvectors are
\begin{bmatrix}
\dfrac{2}{\sqrt{5}}& , \dfrac{1}{\sqrt{5}}
\end{bmatrix} and
\begin{bmatrix}
\dfrac{-1}{\sqrt{5}}& , \dfrac{2}{\sqrt{5}}
\end{bmatrix}The matrix C which is composed of the unit eigenvectors as columns is
$$C = \begin{pmatrix}
\dfrac{2}{\sqrt{5}} & \dfrac{-1}{\sqrt{5}}\\
\dfrac{1}{\sqrt{5}} & \dfrac{2}{\sqrt{5}}
\end{pmatrix}$$
and
$$C^{T} = \begin{pmatrix}
\dfrac{2}{\sqrt{5}} & \dfrac{1}{\sqrt{5}}\\
\dfrac{-1}{\sqrt{5}} & \dfrac{2}{\sqrt{5}}
\end{pmatrix}$$
But when I perform the multiplication I get
$$CMC^{T} = \begin{pmatrix}
\dfrac{-1}{5} & \dfrac{12}{5}\\
\dfrac{12}{5} & \dfrac{6}{5}
\end{pmatrix}$$ which is not a diagonal matrix.
I used maxima to compare answers and realize why my answer wasn't right. Maxima found for eigen vectors
##[ 2, 1 ] [ 1, -2]## whereas I have ##[ 2, 1] [ -1, 2]##.
When using the eigen vectors the computer found, I get
##CMC^{T} = \begin{pmatrix}
3 & 0\\
0 & -2
\end{pmatrix}## which is the solution I'm looking for.
My problem is that my eigen vectors satisfy the characteristic equation so why don't I get the same answer. For future problems how do I really know if my eigen vectors are right, or if they're off by a factor of -1?
Last edited: