- #1
LCSphysicist
- 646
- 162
Homework Statement:: .
Relevant Equations:: .
I am having a hard time thinking about Fourier transform, because there are so many conventions that i think i got more confused each time i think about it.
See an example, "Find the Fourier transform of $$V(t) = Ve^{iwt} \text{ if } nT \leq t \leq n(T + \tau) \text{ for } n = 0,1,...,N-1$$$$V(t) = 0 \text{ otherwise }$$
I don't know what Fourier transform to apply!
There is the convention ##F(w) = \int V(t) e^{iwt} dt##, but there is also ##F(w) = \int V(t) e^{-iwt} dt##.
Of course the second one would be more properly to this problem, but shouldn't both types of FT gives the same answer? Shouldn't they be equivalent?
Now, to let the things get even worst, is to talk about FT from Position to momentum. Everytime i tried to remember the expression, one new arose.
\begin{align*}
F(k) &= (2\pi)^{n/2} \int e^{-ikr} F(r) d^{n}(r) \\
f(k) &= \int d^3 x e^{-kx} f(x)
\end{align*}
I am not sure of this, but i think that all these expression are equivalent, and OK. THe problem is when the problem ask for the FT, as the one above. How the heck i know what convention i should use?
[Moderator's note: moved from homework to Calculus due to its general nature.]
Relevant Equations:: .
I am having a hard time thinking about Fourier transform, because there are so many conventions that i think i got more confused each time i think about it.
See an example, "Find the Fourier transform of $$V(t) = Ve^{iwt} \text{ if } nT \leq t \leq n(T + \tau) \text{ for } n = 0,1,...,N-1$$$$V(t) = 0 \text{ otherwise }$$
I don't know what Fourier transform to apply!
There is the convention ##F(w) = \int V(t) e^{iwt} dt##, but there is also ##F(w) = \int V(t) e^{-iwt} dt##.
Of course the second one would be more properly to this problem, but shouldn't both types of FT gives the same answer? Shouldn't they be equivalent?
Now, to let the things get even worst, is to talk about FT from Position to momentum. Everytime i tried to remember the expression, one new arose.
\begin{align*}
F(k) &= (2\pi)^{n/2} \int e^{-ikr} F(r) d^{n}(r) \\
f(k) &= \int d^3 x e^{-kx} f(x)
\end{align*}
I am not sure of this, but i think that all these expression are equivalent, and OK. THe problem is when the problem ask for the FT, as the one above. How the heck i know what convention i should use?
[Moderator's note: moved from homework to Calculus due to its general nature.]