How Do I Set Up the Schrodinger Equation for This Wave Function?

  • Thread starter Thread starter apigban
  • Start date Start date
apigban
Messages
6
Reaction score
0
Hi! I am having some problems in setting up the Schrodinger equation for a particle described by the wave function:

\Psi = A sinh (x)

should I use the exponential form of the hyperbolic function?

[URL]http://62.0.5.135/upload.wikimedia.org/math/9/c/7/9c74b71126c6bb1f4d6b865019a2735e.png[/URL]


Also, for normalization, do you have any guides that show how to form the complex conjugate of the above function (i don't see the complex parts).
 
Last edited by a moderator:
Physics news on Phys.org
What's the problem with the Schroedinger equation? Are you using the time-independent version (I assume you should be), is there a potential energy associated with this wavefunction?

Further, the complex conjugate of a real valued function is just the real function again. So normalization should look something like:

1=A2 \intsinh2(x)dx
 
Last edited:
This is my solution to the normalization of the wave equation. I am sorry I am totally new at this.

[PLAIN]https://fbcdn-sphotos-a.akamaihd.net/hphotos-ak-snc6/249293_246586558696823_100000364410765_866703_7618168_n.jpg

Is it correct? I just followed wikipedia's
http://en.wikipedia.org/wiki/Normalizable_wave_function#Example_of_normalization

My question on the Schroedinger Eq. is that: Should i use the exponential form of the hyperbolic function? or does it matter if i use the hyperbolic? In the normalization above i used the exponential form.
 
Last edited by a moderator:
When you use the wavefunction in the Schrodinger equation, it shouldn't matter what form (hyperbolic or exponential) you use. Your normalization is off however. The integral of sinh2(x) is:

Exponential form: \frac{1}{4} (exp(2x)/2+exp(-2x)/2-2x)
Hyperbolic form: \frac{1}{4} (sinh(2x) -2x)

Further, you need to take the integral only between o and L, the other parts can be ignored. I may be reading this wrong, but it seems like you tried to absorb the exponentials into A2 and ignored any actual integration.

Cheers,
-Malus
 
thanks! I did the integration. and found what the factor is. thanks also for pointing that hyperbolic or exponentials can be used!.
 
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top