- #1
UbikPkd
- 9
- 0
Ok here goes...
[tex]z=x^{2}+y^{2} [/tex]
[tex]x=rcos\vartheta[/tex]
[tex]y=r sin\vartheta[/tex]
Find:
[tex]\[ \frac{\partial z}{\partial x}_{y},
\[ \frac{\partial z}{\partial
\vartheta}_{x},
\[ \frac{\partial z}{\partial r}_{y},
\[ \frac{\partial z}{\partial r}_{
\vartheta},
[/tex]
___________________________
[tex]\[ \frac{\partial z}{\partial x}_{y}
= 2x [/tex]
this seems right to me (though I'm not
sure if I'm supposed to use a chain rule),
it's the next ones I'm not sure about...
___________________________
[tex]
\[ \frac{\partial z}{\partial
\vartheta}_{x}= [/tex]
I've been at this one for hours, i think i
can use the following, but I'm getting
nowhere.
[tex] dz= \[ \frac{\partial z}{\partial
x}_{y}dx + \[ \frac{\partial z}{\partial
y}_{x}dy[/tex]
[tex] dx= \[ \frac{\partial x}{\partial
r}_{\vartheta}dr + \[ \frac{\partial
x}{\partial \vartheta}_{r}d\vartheta[/tex]
[tex] dy= \[ \frac{\partial y}{\partial
r}_{\vartheta}dr + \[ \frac{\partial
y}{\partial \vartheta}_{r}d\vartheta[/tex]
so...
[tex] dz= \[ \frac{\partial z}{\partial
x}_{y} \left[\[ \frac{\partial x}{\partial
r}_{\vartheta}dr + \[ \frac{\partial
x}{\partial
\vartheta}_{r}d\vartheta\right]+ \[
\frac{\partial z}{\partial y}_{x}\left[\[
\frac{\partial y}{\partial
r}_{\vartheta}dr + \[ \frac{\partial
y}{\partial
\vartheta}_{r}d\vartheta\right][/tex]
can i divide through by [tex] \partial
\vartheta_{x}[/tex] and then work it all
out to get
[tex]
\[ \frac{\partial z}{\partial
\vartheta}_{x} [/tex] ?
please help, i don't have a clue what I'm
doing!
[tex]z=x^{2}+y^{2} [/tex]
[tex]x=rcos\vartheta[/tex]
[tex]y=r sin\vartheta[/tex]
Find:
[tex]\[ \frac{\partial z}{\partial x}_{y},
\[ \frac{\partial z}{\partial
\vartheta}_{x},
\[ \frac{\partial z}{\partial r}_{y},
\[ \frac{\partial z}{\partial r}_{
\vartheta},
[/tex]
___________________________
[tex]\[ \frac{\partial z}{\partial x}_{y}
= 2x [/tex]
this seems right to me (though I'm not
sure if I'm supposed to use a chain rule),
it's the next ones I'm not sure about...
___________________________
[tex]
\[ \frac{\partial z}{\partial
\vartheta}_{x}= [/tex]
I've been at this one for hours, i think i
can use the following, but I'm getting
nowhere.
[tex] dz= \[ \frac{\partial z}{\partial
x}_{y}dx + \[ \frac{\partial z}{\partial
y}_{x}dy[/tex]
[tex] dx= \[ \frac{\partial x}{\partial
r}_{\vartheta}dr + \[ \frac{\partial
x}{\partial \vartheta}_{r}d\vartheta[/tex]
[tex] dy= \[ \frac{\partial y}{\partial
r}_{\vartheta}dr + \[ \frac{\partial
y}{\partial \vartheta}_{r}d\vartheta[/tex]
so...
[tex] dz= \[ \frac{\partial z}{\partial
x}_{y} \left[\[ \frac{\partial x}{\partial
r}_{\vartheta}dr + \[ \frac{\partial
x}{\partial
\vartheta}_{r}d\vartheta\right]+ \[
\frac{\partial z}{\partial y}_{x}\left[\[
\frac{\partial y}{\partial
r}_{\vartheta}dr + \[ \frac{\partial
y}{\partial
\vartheta}_{r}d\vartheta\right][/tex]
can i divide through by [tex] \partial
\vartheta_{x}[/tex] and then work it all
out to get
[tex]
\[ \frac{\partial z}{\partial
\vartheta}_{x} [/tex] ?
please help, i don't have a clue what I'm
doing!