- #1
Aidyan
- 182
- 14
For example, as well known the period of the pendulum is (in linear approximation):
[itex] T \approx 2\pi \sqrt\frac{L}{g} \,.[/itex]
So, no speed of light appears explicitly. What I'm wondering however is if and how it might be implicit? In the sense that after all the tension in the rod depends from molecular forces, which at the microscopic scale are of electric nature. Would a different speed of light than c lead to a different length? Another purely mechanical example: hitting a nail in a wall. In a universe with, say light speed 0.7*c, would it become more or less easier to hit the same nail in the same wall? These are only an example of a more general question. In what way is classical non relativistic mechanics determined by the speed of light, if it does?
[itex] T \approx 2\pi \sqrt\frac{L}{g} \,.[/itex]
So, no speed of light appears explicitly. What I'm wondering however is if and how it might be implicit? In the sense that after all the tension in the rod depends from molecular forces, which at the microscopic scale are of electric nature. Would a different speed of light than c lead to a different length? Another purely mechanical example: hitting a nail in a wall. In a universe with, say light speed 0.7*c, would it become more or less easier to hit the same nail in the same wall? These are only an example of a more general question. In what way is classical non relativistic mechanics determined by the speed of light, if it does?