- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
I am looking at the Riemann integral and I have two questions.
Theorem: Let $f: [a,b] \to \mathbb{R}$ bounded and $c \in (a,b)$. Then $f$ is integrable in $[a,b]$ iff it is integrable in $[a,c]$ and in $[c,b]$. In this case we have $\int_a^b f=\int_a^c f + \int_c^b f$.
At the proof, we use the Riemann criterion to conclude that $\mathcal{U}(f,P)-\mathcal{L}(f,P)<\epsilon$, so $f$ is integrable.
Then the following is stated:
We note that the quantities
$$\int_a^b f \text{ and } \int_a^c f + \int_c^b f$$
are between the numbers $\mathcal{L}(f,P)$ and $\mathcal{U}(f,P)$. Thus,
$$\left| \int_a^b f- \int_a^c f - \int_c^b f\right| \leq \mathcal{U}(f,P)-\mathcal{L}(f,P) < \epsilon.$$
Since the relation holds for any $\epsilon>0$, we get that $\int_a^b f=\int_a^c f+ \int_c^b f$.I haven't understood why the quantities$\int_a^b f \text{ and } \int_a^c f + \int_c^b f$ are between the numbers $\mathcal{L}(f,P)$ and $\mathcal{U}(f,P)$.
Could you explain it to me?
My second question is from the proof of the theorem that if $f,g: [a,b] \to \mathbb{R}$ integrable, then $f+g$ is integrable and $\int_a^b (f+g)=\int_a^b f +\int_a^b g$.
At the proof, we consider a partition of $[a,b]$, $\mathcal{P}=\{ a=t_0< \dots<t_n=b\}$.
Then $\mathcal{U}(f+g,P) \leq \mathcal{U}(f,\mathcal{P})+\mathcal{U}(g,\mathcal{P})$, $\mathcal{L}(f+g,P) \geq \mathcal{L}(f,\mathcal{P})+\mathcal{L}(g,\mathcal{P})$.
Now let $\epsilon>0$. SInce $f,g$ are integrable, there are partitions $\mathcal{P}_1, \mathcal{P}_2$ of $[a,b]$ such that
$$\mathcal{U}(f,\mathcal{P}_1)-\mathcal{L}(f,\mathcal{P}_1)< \frac{\epsilon}{2}, \mathcal{U}(g,\mathcal{P}_2)-\mathcal{L}(g,\mathcal{P}_2)< \frac{\epsilon}{2}$$
Then, if we set $\mathcal{P}=\mathcal{P}_1 \cup \mathcal{P}_2$, we have
$$\mathcal{U}(f,\mathcal{P})-\mathcal{L}(f,\mathcal{P})< \frac{\epsilon}{2}, \mathcal{U}(g,\mathcal{P})-\mathcal{L}(g,\mathcal{P})< \frac{\epsilon}{2}$$
From these relations we get that
$$\int_a^b f < \mathcal{L}(f, \mathcal{P})+\frac{\epsilon}{2}, \int_a^b g< \mathcal{L}(g, \mathcal{P})+\frac{\epsilon}{2}$$
and
$$\int_a^b f > \mathcal{U}(f, \mathcal{P})-\frac{\epsilon}{2}, \int_a^b g> \mathcal{U}(g, \mathcal{P})-\frac{\epsilon}{2}.$$
By adding the first two relations, we get that $\int_a^b f+\int_a^b g \leq \int_{\underline{a}}^{b} (f+g)+\epsilon$.
$\dots$Could you explain to me how we get that
$$\int_a^b f < \mathcal{L}(f, \mathcal{P})+\frac{\epsilon}{2}, \int_a^b g< \mathcal{L}(g, \mathcal{P})+\frac{\epsilon}{2}$$
and
$$\int_a^b f > \mathcal{U}(f, \mathcal{P})-\frac{\epsilon}{2}, \int_a^b g> \mathcal{U}(g, \mathcal{P})-\frac{\epsilon}{2}.$$
? :unsure:
I am looking at the Riemann integral and I have two questions.
Theorem: Let $f: [a,b] \to \mathbb{R}$ bounded and $c \in (a,b)$. Then $f$ is integrable in $[a,b]$ iff it is integrable in $[a,c]$ and in $[c,b]$. In this case we have $\int_a^b f=\int_a^c f + \int_c^b f$.
At the proof, we use the Riemann criterion to conclude that $\mathcal{U}(f,P)-\mathcal{L}(f,P)<\epsilon$, so $f$ is integrable.
Then the following is stated:
We note that the quantities
$$\int_a^b f \text{ and } \int_a^c f + \int_c^b f$$
are between the numbers $\mathcal{L}(f,P)$ and $\mathcal{U}(f,P)$. Thus,
$$\left| \int_a^b f- \int_a^c f - \int_c^b f\right| \leq \mathcal{U}(f,P)-\mathcal{L}(f,P) < \epsilon.$$
Since the relation holds for any $\epsilon>0$, we get that $\int_a^b f=\int_a^c f+ \int_c^b f$.I haven't understood why the quantities$\int_a^b f \text{ and } \int_a^c f + \int_c^b f$ are between the numbers $\mathcal{L}(f,P)$ and $\mathcal{U}(f,P)$.
Could you explain it to me?
My second question is from the proof of the theorem that if $f,g: [a,b] \to \mathbb{R}$ integrable, then $f+g$ is integrable and $\int_a^b (f+g)=\int_a^b f +\int_a^b g$.
At the proof, we consider a partition of $[a,b]$, $\mathcal{P}=\{ a=t_0< \dots<t_n=b\}$.
Then $\mathcal{U}(f+g,P) \leq \mathcal{U}(f,\mathcal{P})+\mathcal{U}(g,\mathcal{P})$, $\mathcal{L}(f+g,P) \geq \mathcal{L}(f,\mathcal{P})+\mathcal{L}(g,\mathcal{P})$.
Now let $\epsilon>0$. SInce $f,g$ are integrable, there are partitions $\mathcal{P}_1, \mathcal{P}_2$ of $[a,b]$ such that
$$\mathcal{U}(f,\mathcal{P}_1)-\mathcal{L}(f,\mathcal{P}_1)< \frac{\epsilon}{2}, \mathcal{U}(g,\mathcal{P}_2)-\mathcal{L}(g,\mathcal{P}_2)< \frac{\epsilon}{2}$$
Then, if we set $\mathcal{P}=\mathcal{P}_1 \cup \mathcal{P}_2$, we have
$$\mathcal{U}(f,\mathcal{P})-\mathcal{L}(f,\mathcal{P})< \frac{\epsilon}{2}, \mathcal{U}(g,\mathcal{P})-\mathcal{L}(g,\mathcal{P})< \frac{\epsilon}{2}$$
From these relations we get that
$$\int_a^b f < \mathcal{L}(f, \mathcal{P})+\frac{\epsilon}{2}, \int_a^b g< \mathcal{L}(g, \mathcal{P})+\frac{\epsilon}{2}$$
and
$$\int_a^b f > \mathcal{U}(f, \mathcal{P})-\frac{\epsilon}{2}, \int_a^b g> \mathcal{U}(g, \mathcal{P})-\frac{\epsilon}{2}.$$
By adding the first two relations, we get that $\int_a^b f+\int_a^b g \leq \int_{\underline{a}}^{b} (f+g)+\epsilon$.
$\dots$Could you explain to me how we get that
$$\int_a^b f < \mathcal{L}(f, \mathcal{P})+\frac{\epsilon}{2}, \int_a^b g< \mathcal{L}(g, \mathcal{P})+\frac{\epsilon}{2}$$
and
$$\int_a^b f > \mathcal{U}(f, \mathcal{P})-\frac{\epsilon}{2}, \int_a^b g> \mathcal{U}(g, \mathcal{P})-\frac{\epsilon}{2}.$$
? :unsure: