- #1
gnob
- 11
- 0
Hi! I am reading the book of Karatzas and Shreve (Brownian Motion and Stochastic Calculus - Ioannis Karatzas, Steven E. Shreve - Google Books). On page 4 we have the ff definitions:
$$
\mathcal{F}_{t-} := \sigma \left( \bigcup_{s<t} \mathcal{F}_s \right) \quad \text{and}\quad
\mathcal{F}_{t+} := \sigma \left( \bigcap_{\epsilon >0} \mathcal{F}_{t+\epsilon} \right),
$$
where $t,s \in \mathbb{R}$ and $t,s>0.$
My questions are:
(1) Is $\mathcal{F}_{t-} := \sigma \left( \bigcup_{s<t} \mathcal{F}_s \right)
= \sigma \left( \bigcup_{q<t} \mathcal{F}_q \right)
= \sigma \left( \bigcup_{n=n_k}^{\infty} \mathcal{F}_{t-\frac{1}{n}} \right)$ where $q \in \mathbb{Q} \cap (0,\infty)$ and $n_k \in \mathbb{Z}^+$ are chosen so that $t -\frac{1}{n_k} >0$?
(2) Is $\mathcal{F}_{t+} := \sigma \left( \bigcap_{\epsilon >0} \mathcal{F}_{t+\epsilon} \right)
=\sigma \left( \bigcap_{q >0} \mathcal{F}_{t+q} \right)
=\sigma \left( \bigcap_{n=1}^{\infty} \mathcal{F}_{t+\frac{1}{n}} \right)$ where $q \in \mathbb{Q} \cap (0,\infty)$ and $n \in \mathbb{Z}^+$?
My idea is to use the fact that $\mathbb{Q}$ is dense in $\mathbb{R}$ but i am not sure how to write the proof. Any help would be appreciated. Thanks.
$$
\mathcal{F}_{t-} := \sigma \left( \bigcup_{s<t} \mathcal{F}_s \right) \quad \text{and}\quad
\mathcal{F}_{t+} := \sigma \left( \bigcap_{\epsilon >0} \mathcal{F}_{t+\epsilon} \right),
$$
where $t,s \in \mathbb{R}$ and $t,s>0.$
My questions are:
(1) Is $\mathcal{F}_{t-} := \sigma \left( \bigcup_{s<t} \mathcal{F}_s \right)
= \sigma \left( \bigcup_{q<t} \mathcal{F}_q \right)
= \sigma \left( \bigcup_{n=n_k}^{\infty} \mathcal{F}_{t-\frac{1}{n}} \right)$ where $q \in \mathbb{Q} \cap (0,\infty)$ and $n_k \in \mathbb{Z}^+$ are chosen so that $t -\frac{1}{n_k} >0$?
(2) Is $\mathcal{F}_{t+} := \sigma \left( \bigcap_{\epsilon >0} \mathcal{F}_{t+\epsilon} \right)
=\sigma \left( \bigcap_{q >0} \mathcal{F}_{t+q} \right)
=\sigma \left( \bigcap_{n=1}^{\infty} \mathcal{F}_{t+\frac{1}{n}} \right)$ where $q \in \mathbb{Q} \cap (0,\infty)$ and $n \in \mathbb{Z}^+$?
My idea is to use the fact that $\mathbb{Q}$ is dense in $\mathbb{R}$ but i am not sure how to write the proof. Any help would be appreciated. Thanks.