- #1
Saitama
- 4,243
- 93
Problem:
Let $\vec{a}$,$\vec{b}$ and $\vec{c}$ be non-coplanar unit vectors, equally incline to one another at an angle $\theta$. If $\vec{a}\times \vec{b} + \vec{b}\times \vec{c}=p\vec{a}+q\vec{b}+r\vec{c}$. Find scalars $p$,$q$ and $r$ in terms of $\theta$.
Attempt:
Taking the dot product on both sides successively with $\vec{a}$,$\vec{b}$ and $\vec{c}$, I get the following three equations:
$$\begin{array}
\\
[\vec{a} \vec{b} \vec{c}]=p+q\cos\theta+r\cos\theta \\
0=p\cos\theta+q+r\cos\theta \\
[\vec{a} \vec{b} \vec{c}]=p\cos\theta+q\cos\theta+r \\
\end{array}
$$
I am not sure how to proceed after this. I guess I have to express $[\vec{a} \vec{b} \vec{c}]$ in terms of $\theta$ but I don't see how.
Any help is appreciated. Thanks!
Let $\vec{a}$,$\vec{b}$ and $\vec{c}$ be non-coplanar unit vectors, equally incline to one another at an angle $\theta$. If $\vec{a}\times \vec{b} + \vec{b}\times \vec{c}=p\vec{a}+q\vec{b}+r\vec{c}$. Find scalars $p$,$q$ and $r$ in terms of $\theta$.
Attempt:
Taking the dot product on both sides successively with $\vec{a}$,$\vec{b}$ and $\vec{c}$, I get the following three equations:
$$\begin{array}
\\
[\vec{a} \vec{b} \vec{c}]=p+q\cos\theta+r\cos\theta \\
0=p\cos\theta+q+r\cos\theta \\
[\vec{a} \vec{b} \vec{c}]=p\cos\theta+q\cos\theta+r \\
\end{array}
$$
I am not sure how to proceed after this. I guess I have to express $[\vec{a} \vec{b} \vec{c}]$ in terms of $\theta$ but I don't see how.
Any help is appreciated. Thanks!
Last edited: