- #1
WendysRules
- 37
- 3
Homework Statement
A beam of spin ##\frac{1}{2}## particles is prepared in the state: ##|\psi> = \frac{3}{\sqrt{34}}|+> + \frac{5i}{\sqrt{34}}|->##
a) What are the possible results of a measurement of the spin component ##S_z##, and with what probabilities would they occur?
b) Suppose that the ##S_z## measurement yields the result ##S_z = -\frac{\hbar}{2}##. Subsequent to that result a second measurement is performed to measure the spin component ##S_x##. What are the possible results of that measurement, and with what probabilities would they occur?
Homework Equations
##P_a= |<a|\psi>|^2##
The Attempt at a Solution
For a), the possibilities are spin up, or spin down AKA ##\pm \frac{\hbar}{2}##
The probability to measure it in spin up is ##|<+|\psi>|^2 = (\frac{3}{\sqrt{34}})^2 = \frac{9}{34}##
The probability to measure it spin down is ##|<-|\psi>|^2 =(\frac{5}{\sqrt{34}})^2 = \frac{25}{34}##
b)
The measurement in the Z-axis has no affect on the measurement on the spin for the X-axis due to them being incompatible observables. So, my thought process would be to say there is a 50% of being up/down, giving us the probability to be in spin up ##\frac{25}{68}## and spin down ##\frac{25}{68}## but I'm not if maybe they want me to use the projection postulate? But I'm not sure how to tie it in here.
Thanks for the help.