- #1
eoghan
- 210
- 7
[QM] Hamiltonian and symmetries
Let there be the hamiltonian:
[tex]H=\frac{P^2}{2m}+\frac{1}{2}m\omega^2(x^2+y^2+z^2)+kxyz+\frac{k^2}{\hbar \omega}x^2y^2z^2[/tex]
Find the expectation value of the three components of [tex]\vec r[/tex] in the ground state using ONLY the symmetry properties of the hamiltonian.
I define this parity:
[tex]\Pi_{xy}: x\rightarrow-x\ \ \ \ y\rightarrow-y[/tex]
Then the hamiltonian commutes with this parity: [tex][H, \Pi_{xy}]=0[/tex]
The ground state is not degenerate, so it has a definite parity with respect to [tex]\Pi_{xy}[/tex]:
[tex]<gs|x|gs>=<gs|\Pi_{xy}\Pi_{xy}x\Pi_{xy}\Pi_{xy}|gs>=-<gs|\Pi_{xy}x\Pi_{xy}|gs>=-<gs|x|gs>[/tex]
So <gs|x|gs>=0;
Is it right?
Homework Statement
Let there be the hamiltonian:
[tex]H=\frac{P^2}{2m}+\frac{1}{2}m\omega^2(x^2+y^2+z^2)+kxyz+\frac{k^2}{\hbar \omega}x^2y^2z^2[/tex]
Find the expectation value of the three components of [tex]\vec r[/tex] in the ground state using ONLY the symmetry properties of the hamiltonian.
Homework Equations
The Attempt at a Solution
I define this parity:
[tex]\Pi_{xy}: x\rightarrow-x\ \ \ \ y\rightarrow-y[/tex]
Then the hamiltonian commutes with this parity: [tex][H, \Pi_{xy}]=0[/tex]
The ground state is not degenerate, so it has a definite parity with respect to [tex]\Pi_{xy}[/tex]:
[tex]<gs|x|gs>=<gs|\Pi_{xy}\Pi_{xy}x\Pi_{xy}\Pi_{xy}|gs>=-<gs|\Pi_{xy}x\Pi_{xy}|gs>=-<gs|x|gs>[/tex]
So <gs|x|gs>=0;
Is it right?
Last edited: