How do they come from F to the area? (formula example)

In summary, the formula for finding the area is derived through mathematical principles and concepts, such as geometry and algebra. The most common formula used to find the area is the formula for the area of a rectangle, but there are also other formulas for different shapes, such as triangles, circles, and trapezoids. The specific formula to use for a shape depends on its properties, and in some cases, the formula can be applied to irregular shapes with additional methods.
  • #1
discy
15
0
/close
 

Attachments

  • Untitled.png
    Untitled.png
    8.1 KB · Views: 465
Last edited:
Physics news on Phys.org
  • #2
It's just F(top number) - F(bottom number) if F(x) = -x^3/3+x^2+3x, what is F(0)-F(-1)?
 

FAQ: How do they come from F to the area? (formula example)

How is the formula for finding the area derived?

The formula for finding the area is derived by using mathematical principles and concepts, such as geometry and algebra. It involves understanding the properties of shapes and how they relate to each other, as well as using variables and equations to represent these relationships.

What is the most common formula used to find the area?

The most common formula used to find the area is the formula for the area of a rectangle, which is length x width. This formula can also be applied to other shapes, such as squares and parallelograms.

What other formulas are used to find the area of different shapes?

There are various formulas used to find the area of different shapes, such as the formula for the area of a triangle (1/2 x base x height), the formula for the area of a circle (π x radius^2), and the formula for the area of a trapezoid (1/2 x (base 1 + base 2) x height).

How do you know which formula to use for a specific shape?

The formula to use for a specific shape depends on the properties of that shape. For example, the formula for the area of a circle is used because a circle has a specific property of having a curved perimeter. It is important to understand the properties of a shape in order to determine which formula to use.

Can the formula for finding the area be applied to irregular shapes?

In some cases, the formula for finding the area can be applied to irregular shapes. However, it may be more complicated and require breaking the shape into smaller, more manageable shapes. Other methods, such as using calculus, may also be used to find the area of irregular shapes.

Back
Top