- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
I want to check the convergence of the following integrals:
I want to check the convergence of the following integrals:
- $\displaystyle{\int_2^{\infty}\frac{1}{x\left (\log (x)\right )^2}dx}$
We have that: \begin{equation*}\int_2^{\infty}\frac{1}{x\left (\log (x)\right )^2}dx=\lim_{b\rightarrow \infty}\int_2^b\frac{1}{x\left (\log (x)\right )^2}dx\end{equation*}
To calculate the integral $\int_2^b\frac{1}{x\left (\log (x)\right )^2}dx$ we use the substitution $u=\log (x)$.
We have the following: \begin{align*}\int_2^b\frac{1}{x\left (\log (x)\right )^2}dx & =\int_{\log(2)}^{\log(b)}\frac{1}{e^u\left (\log (e^u)\right )^2}\cdot e^udu \\ & =\int_{\log(2)}^{\log(b)}u^{-2}du \\ & =-\left [u^{-1}\right ]_{\log (2)}^{\log (b)} \\ & =-\left (\frac{1}{\log (b)}-\frac{1}{\log (2)}\right ) \\ & =-\frac{1}{\log (b)}+\frac{1}{\log (2)}\end{align*}
So, the integral is \begin{equation*}\lim_{b\rightarrow \infty}\int_2^b\frac{1}{x\left (\log (x)\right )^2}dx=\lim_{b\rightarrow \infty}\left (-\frac{1}{\log (b)}+\frac{1}{\log (2)}\right )=-0+\frac{1}{\log (2)}=\frac{1}{\log (2)}\in \mathbb{R}\end{equation*}
Therefore, the integral $\displaystyle{\int_2^{\infty}\frac{1}{x\left (\log (x)\right )^2}dx}$ converges. Could we show the convergence also without calculating the integral? (Wondering)
$$$$
- $\displaystyle{\int_0^{\infty}e^{sx}\cos (tx)dx}$, wobei $s<0$ und $t\in \mathbb{R}$
We have that \begin{equation*}\left |e^{sx}\cos (tx)\right |=\left |e^{sx}\right |\cdot \left |\cos (tx)\right |\leq \left |e^{sx}\right |=e^{sx}\end{equation*}
We have that: \begin{equation*}\int_0^{\infty}e^{sx}=\lim_{b\rightarrow \infty}\int_0^b e^{sx}dx\end{equation*}
Therfore we get \begin{equation*}\lim_{b\rightarrow \infty}\int_0^b e^{sx}dx=\lim_{b\rightarrow \infty}\left [\frac{1}{s}e^{sx}\right ]_0^b=\frac{1}{s}\lim_{b\rightarrow \infty}\left [e^{sx}\right ]_0^b=\frac{1}{s}\lim_{b\rightarrow \infty}\left (e^{sb}-1\right )=\frac{1}{s}\left (0-1\right )=-\frac{1}{s}\end{equation*}
So, we have that \begin{equation*}\int_0^{\infty}e^{sx}=-\frac{1}{s}\in \mathbb{R}\end{equation*}
That means that the integral $\displaystyle{\int_0^{\infty}e^{sx}dx}$ coverges and so the integral $\displaystyle{\int_0^{\infty}e^{sx}\cos (tx)dx}$ also converges.
Is this correct? (Wondering)
$$$$
- $\displaystyle{\int_0^1\left (\log (x)\right )^2dx}$
Calculating that integral we get $0$. So, the integral converges.
Is there also an other way without calculating it? (Wondering)
$$$$
- $\displaystyle{\int_1^{\infty}\frac{x\sqrt{x}}{(2x+1)^2}dx}$
Could you give a hint for that one? (Wondering)