- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
Let $A\in \mathbb{C}^{2\times 2}$ and $L_A:\mathbb{C}^{2\times 2}\rightarrow \mathbb{C}^{2\times 2}, \ X\mapsto A\cdot X$.
We consider the matrix \begin{equation*}A=\begin{pmatrix}-1 & 2 \\ 2 & -4\end{pmatrix}\end{equation*} and the basis \begin{equation*}B=\left \{\begin{pmatrix}1 & 0 \\ 0 & 0\end{pmatrix}, \begin{pmatrix}0 & 1 \\ 0 & 0\end{pmatrix} , \begin{pmatrix}0 & 0 \\ 1 & 0\end{pmatrix}, \begin{pmatrix}0 & 0 \\ 0 & 1\end{pmatrix}\right \}\end{equation*}
I have calculated the transformation matrix of $L_A$ in respect to the basis, which is the following:
\begin{equation*}C=\begin{pmatrix}-1 & 0 &2 &0 \\ 0 &-1 & 0 & 2 \\ 2 & 0 & -4 & 0 \\ 0 & 2 & 0 & -4\end{pmatrix}\end{equation*}
I want to determine a basis of the kernel of $L_A$ and a basis of the image of $L_A$.
Can we determine these using the transformation matrix $C$ ? Or how can we calculated the bases? (Wondering)
Let $A\in \mathbb{C}^{2\times 2}$ and $L_A:\mathbb{C}^{2\times 2}\rightarrow \mathbb{C}^{2\times 2}, \ X\mapsto A\cdot X$.
We consider the matrix \begin{equation*}A=\begin{pmatrix}-1 & 2 \\ 2 & -4\end{pmatrix}\end{equation*} and the basis \begin{equation*}B=\left \{\begin{pmatrix}1 & 0 \\ 0 & 0\end{pmatrix}, \begin{pmatrix}0 & 1 \\ 0 & 0\end{pmatrix} , \begin{pmatrix}0 & 0 \\ 1 & 0\end{pmatrix}, \begin{pmatrix}0 & 0 \\ 0 & 1\end{pmatrix}\right \}\end{equation*}
I have calculated the transformation matrix of $L_A$ in respect to the basis, which is the following:
\begin{equation*}C=\begin{pmatrix}-1 & 0 &2 &0 \\ 0 &-1 & 0 & 2 \\ 2 & 0 & -4 & 0 \\ 0 & 2 & 0 & -4\end{pmatrix}\end{equation*}
I want to determine a basis of the kernel of $L_A$ and a basis of the image of $L_A$.
Can we determine these using the transformation matrix $C$ ? Or how can we calculated the bases? (Wondering)