- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey! :unsure:
It is given that the negation of "$\forall a\in A: \alpha (a)$" is "$\exists a\in A: \neg \alpha (a)$" and the negation of "$\exists b\in B: \beta (b)$" is "$\forall b\in B: \neg \beta (b)$".
I want to show that the negation of "$\forall a \in A \ \exists b \in B \ : \ \alpha (a, b)$" is "$\exists a \in A \ \forall b \in B \ : \ \neg \alpha (a, b)$".
Do we show that as follows? \begin{align*}\neg \left (\forall a \in A \ \exists b \in B \ : \ \alpha (a, b)\right )&\equiv \exists a \in A \ \neg \left ( \exists b \in B \ : \ \alpha (a, b)\right ) \\ & \equiv \exists a \in A \ \forall b \in B \ : \ \neg \alpha (a, b)\end{align*} Let $A\subset \mathbb{R}$ and let $f, g, h:A\rightarrow \mathbb{R}$ be functions.
I want to determine the negation of "$\forall \epsilon>0 \ \exists \alpha ,\beta >0 \ : \ [x\in A, f(x)\leq \alpha , g(x)\geq \beta \Rightarrow h(x)\leq \epsilon]$".
I have done the following:
\begin{align*}&\neg \left (\forall \epsilon>0 \ \exists \alpha ,\beta >0 \ : \ [x\in A, f(x)\leq \alpha , g(x)\geq \beta \Rightarrow h(x)\leq \epsilon]\right ) \\ & \equiv \exists \epsilon>0 \ \forall \alpha ,\beta >0 \ : \ \neg [x\in A, f(x)\leq \alpha , g(x)\geq \beta \Rightarrow h(x)\leq \epsilon] \\ & \equiv \exists \epsilon>0 \ \forall \alpha ,\beta >0 \ : \ \neg [\neg \left (x\in A, f(x)\leq \alpha , g(x)\geq \beta\right ) \lor h(x)\leq \epsilon] \\ & \equiv \exists \epsilon>0 \ \forall \alpha ,\beta >0 \ : \ [\left (x\in A, f(x)\leq \alpha , g(x)\geq \beta\right ) \land h(x)> \epsilon]\end{align*}
Is everything correct?
:unsure:
It is given that the negation of "$\forall a\in A: \alpha (a)$" is "$\exists a\in A: \neg \alpha (a)$" and the negation of "$\exists b\in B: \beta (b)$" is "$\forall b\in B: \neg \beta (b)$".
I want to show that the negation of "$\forall a \in A \ \exists b \in B \ : \ \alpha (a, b)$" is "$\exists a \in A \ \forall b \in B \ : \ \neg \alpha (a, b)$".
Do we show that as follows? \begin{align*}\neg \left (\forall a \in A \ \exists b \in B \ : \ \alpha (a, b)\right )&\equiv \exists a \in A \ \neg \left ( \exists b \in B \ : \ \alpha (a, b)\right ) \\ & \equiv \exists a \in A \ \forall b \in B \ : \ \neg \alpha (a, b)\end{align*} Let $A\subset \mathbb{R}$ and let $f, g, h:A\rightarrow \mathbb{R}$ be functions.
I want to determine the negation of "$\forall \epsilon>0 \ \exists \alpha ,\beta >0 \ : \ [x\in A, f(x)\leq \alpha , g(x)\geq \beta \Rightarrow h(x)\leq \epsilon]$".
I have done the following:
\begin{align*}&\neg \left (\forall \epsilon>0 \ \exists \alpha ,\beta >0 \ : \ [x\in A, f(x)\leq \alpha , g(x)\geq \beta \Rightarrow h(x)\leq \epsilon]\right ) \\ & \equiv \exists \epsilon>0 \ \forall \alpha ,\beta >0 \ : \ \neg [x\in A, f(x)\leq \alpha , g(x)\geq \beta \Rightarrow h(x)\leq \epsilon] \\ & \equiv \exists \epsilon>0 \ \forall \alpha ,\beta >0 \ : \ \neg [\neg \left (x\in A, f(x)\leq \alpha , g(x)\geq \beta\right ) \lor h(x)\leq \epsilon] \\ & \equiv \exists \epsilon>0 \ \forall \alpha ,\beta >0 \ : \ [\left (x\in A, f(x)\leq \alpha , g(x)\geq \beta\right ) \land h(x)> \epsilon]\end{align*}
Is everything correct?
:unsure: