- #1
cragar
- 2,552
- 3
[tex]
sec(x) = \frac{2}{e^{ix}+e^{-ix}}
[/tex]
then i multply bot top and bottom by [tex] e^{ix} [/tex]
so i can do a u substitution
[tex] u=e^{ix} du=ie^{ix} [/tex]
so then [tex] \int {\frac{2du}{(u^2+1)i}}
=\frac {2arctan(u)}{i}} [/tex]
so then i turn the arctan into a log
then i get [tex] ln|e^{ix}+i|-ln|e^{ix}-i| + c [/tex]
then how do i get the real part out if this .
sec(x) = \frac{2}{e^{ix}+e^{-ix}}
[/tex]
then i multply bot top and bottom by [tex] e^{ix} [/tex]
so i can do a u substitution
[tex] u=e^{ix} du=ie^{ix} [/tex]
so then [tex] \int {\frac{2du}{(u^2+1)i}}
=\frac {2arctan(u)}{i}} [/tex]
so then i turn the arctan into a log
then i get [tex] ln|e^{ix}+i|-ln|e^{ix}-i| + c [/tex]
then how do i get the real part out if this .
Last edited: