- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
We have this: $y''+y=\frac{1}{\cos x} , y'(0)=0, y(\pi)=0$.
Using the Green function I got that $y(x)= x \sin x+ \cos x( -\ln |\cos \pi|+ \ln |\cos x|)=x \sin x+ \cos x (\ln |\cos x|)$.
But according to Wolfram: y'''''''+'y'='1'/'cosx , y''''('0')''='0, y'('pi')''='0 - Wolfram|AlphaHow do we get the imaginary part?
We have this: $y''+y=\frac{1}{\cos x} , y'(0)=0, y(\pi)=0$.
Using the Green function I got that $y(x)= x \sin x+ \cos x( -\ln |\cos \pi|+ \ln |\cos x|)=x \sin x+ \cos x (\ln |\cos x|)$.
But according to Wolfram: y'''''''+'y'='1'/'cosx , y''''('0')''='0, y'('pi')''='0 - Wolfram|AlphaHow do we get the imaginary part?