- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)We consider the initial - boundary value problem
$$u_t(t,x)=a(t,x) u_{xx}(t,x)-c(t,x) u(t,x) \forall t \in [0,T_f], x \in [a,b] \\ u(0,x)=u_0(x) \forall x \in [a,b] \\ u(t,a)=0=u(t,b) \forall t \in [0,T_f]\\ a,c \in C^1, a(t,x)>0, c(t,x) \geq 0$$
$$\tau=\frac{T_f}{N_t}, t_n=n \tau, n=0,1, \dots, N_t$$
We consider the explicit Euler method.
The sheme is $u_i^{n+1}= \mu a_i^n u_{i+1}^n +(1- 2 \mu a_i^n - \tau c_i^n) u_i^n + \mu a_i^n u_{i-1}^n$
$u_i^n=u_0(x_i)$ for $n=0, \forall i=0, \dots, N_x+1$
$u_i^n=0$ for $i=0, i=N_x+1$ , $\forall n=0, \dots, N_t$
Let $u$ be the exact solution of the problem.
Suppose that $\mu a_i^n +\frac{\tau}{2} c_i^n \leq \frac{1}{2} \forall i,n$.
Then $\max_{1 \leq i \leq N_x} |u(t_n, x_i)-u_i^n| \leq T_f \left( \frac{\tau}{2} M_{tt}+\frac{h^2}{12} M_{xxxx} A \right) $, where $A=||a(t,x)||_{\infty}, M_{tt}=||u_{tt}(t,x)||_{\infty}, M_{xxxx}=||u_{xxxx}||_{\infty}$.
I want to show the above inequality.$e_i^n:=u(t_n, x_i)-u_i^n, e_i^0=0$
I have shown that $E_n \leq (2+2 \mu A) E_{n-1}+\tau \left( \frac{\tau}{2} M_{tt}+ A \frac{h^2}{12} M_{xxxx}\right)$, where $E_n=\max_{1 \leq i \leq N_x} |e_i^n|$.But then we get that $E_n \leq \sum_{i=0}^{n-1} (2+ 2 \mu A)^i \tau \left( \frac{\tau}{2} M_{tt}+ A \frac{h^2}{12} M_{xxxx}\right)= \frac{(2+ 2 \mu A)^n-1}{2 \mu A+1} \tau \left( \frac{\tau}{2} M_{tt}+ A \frac{h^2}{12} M_{xxxx}\right) $.But then we don't get the right constant of the inequality.
So do you think that my calculations are wrong? (Thinking)
$$u_t(t,x)=a(t,x) u_{xx}(t,x)-c(t,x) u(t,x) \forall t \in [0,T_f], x \in [a,b] \\ u(0,x)=u_0(x) \forall x \in [a,b] \\ u(t,a)=0=u(t,b) \forall t \in [0,T_f]\\ a,c \in C^1, a(t,x)>0, c(t,x) \geq 0$$
$$\tau=\frac{T_f}{N_t}, t_n=n \tau, n=0,1, \dots, N_t$$
We consider the explicit Euler method.
The sheme is $u_i^{n+1}= \mu a_i^n u_{i+1}^n +(1- 2 \mu a_i^n - \tau c_i^n) u_i^n + \mu a_i^n u_{i-1}^n$
$u_i^n=u_0(x_i)$ for $n=0, \forall i=0, \dots, N_x+1$
$u_i^n=0$ for $i=0, i=N_x+1$ , $\forall n=0, \dots, N_t$
Let $u$ be the exact solution of the problem.
Suppose that $\mu a_i^n +\frac{\tau}{2} c_i^n \leq \frac{1}{2} \forall i,n$.
Then $\max_{1 \leq i \leq N_x} |u(t_n, x_i)-u_i^n| \leq T_f \left( \frac{\tau}{2} M_{tt}+\frac{h^2}{12} M_{xxxx} A \right) $, where $A=||a(t,x)||_{\infty}, M_{tt}=||u_{tt}(t,x)||_{\infty}, M_{xxxx}=||u_{xxxx}||_{\infty}$.
I want to show the above inequality.$e_i^n:=u(t_n, x_i)-u_i^n, e_i^0=0$
I have shown that $E_n \leq (2+2 \mu A) E_{n-1}+\tau \left( \frac{\tau}{2} M_{tt}+ A \frac{h^2}{12} M_{xxxx}\right)$, where $E_n=\max_{1 \leq i \leq N_x} |e_i^n|$.But then we get that $E_n \leq \sum_{i=0}^{n-1} (2+ 2 \mu A)^i \tau \left( \frac{\tau}{2} M_{tt}+ A \frac{h^2}{12} M_{xxxx}\right)= \frac{(2+ 2 \mu A)^n-1}{2 \mu A+1} \tau \left( \frac{\tau}{2} M_{tt}+ A \frac{h^2}{12} M_{xxxx}\right) $.But then we don't get the right constant of the inequality.
So do you think that my calculations are wrong? (Thinking)