- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
If we have the initial value problem
$$h''(t)=-\frac{R^2 g}{(h(t)+R)^2} \\ h(0)=0, h'(0)=V$$
we have the fundamental units: $T,L$ such that $T=[t], L=[h], L=[R], LT^{-1}=[V], LT^{-2}=[g]$ and we get the independent dimensionless quantities $\pi_1=\frac{h}{R}, \pi_2=\frac{t}{\frac{R}{V}}, \pi_3=\frac{V}{\sqrt{gR}}$
If we take $\pi_1=\frac{h}{R}$ and $\pi_2=\frac{t}{\frac{R}{V}}$ we have the scaling:
$$\overline{h}=\frac{h}{R}, \overline{t}=\frac{t}{\frac{R}{V}}$$
Then the initial value problem is written equivalently
$$\epsilon \overline{h}''(\overline{t})=-\frac{1}{(1+\overline{h}(\overline{t}))^2} \\ \overline{h}(0)=0, \overline{h}'(0)=1 \\ \text{ where } \epsilon=\frac{V^2}{Rg}$$
Could you explain me how we get to $\epsilon \overline{h}''(\overline{t})=-\frac{1}{(1+\overline{h}(\overline{t}))^2}$ ? (Thinking)
If we have the initial value problem
$$h''(t)=-\frac{R^2 g}{(h(t)+R)^2} \\ h(0)=0, h'(0)=V$$
we have the fundamental units: $T,L$ such that $T=[t], L=[h], L=[R], LT^{-1}=[V], LT^{-2}=[g]$ and we get the independent dimensionless quantities $\pi_1=\frac{h}{R}, \pi_2=\frac{t}{\frac{R}{V}}, \pi_3=\frac{V}{\sqrt{gR}}$
If we take $\pi_1=\frac{h}{R}$ and $\pi_2=\frac{t}{\frac{R}{V}}$ we have the scaling:
$$\overline{h}=\frac{h}{R}, \overline{t}=\frac{t}{\frac{R}{V}}$$
Then the initial value problem is written equivalently
$$\epsilon \overline{h}''(\overline{t})=-\frac{1}{(1+\overline{h}(\overline{t}))^2} \\ \overline{h}(0)=0, \overline{h}'(0)=1 \\ \text{ where } \epsilon=\frac{V^2}{Rg}$$
Could you explain me how we get to $\epsilon \overline{h}''(\overline{t})=-\frac{1}{(1+\overline{h}(\overline{t}))^2}$ ? (Thinking)