- #1
momoichi8382
- 2
- 0
we have physical evidence for the composition of a proton because it decays from a neutron
however all experiments such as https://en.wikipedia.org/wiki/Deep_inelastic_scattering etc, always involve a proton and possibly a neutron, in fact you can't accelerate a neutron without a proton, deuterium etc also must have protons, targets etc. have protons, since all these experiments about neutrons have protons how do we know we're not getting readings from protons instead of neutrons
what I'm asking is, a neutron is said to be 2 down quarks and 1 up quark, well how do we know a neutron isn't actually 3 up quarks which then decays into 2 up and and 1 down when it turns into a proton, I'm not saying i believe a neutron is actually 3 up quarks, I'm just saying how do we know it isn't?
do we know it isn't from purely mathematical reasons or can we experimentally prove it as well? do we simply know because we smash atoms together and count the ratios of up and down quarks?
thanks in advance
however all experiments such as https://en.wikipedia.org/wiki/Deep_inelastic_scattering etc, always involve a proton and possibly a neutron, in fact you can't accelerate a neutron without a proton, deuterium etc also must have protons, targets etc. have protons, since all these experiments about neutrons have protons how do we know we're not getting readings from protons instead of neutrons
what I'm asking is, a neutron is said to be 2 down quarks and 1 up quark, well how do we know a neutron isn't actually 3 up quarks which then decays into 2 up and and 1 down when it turns into a proton, I'm not saying i believe a neutron is actually 3 up quarks, I'm just saying how do we know it isn't?
do we know it isn't from purely mathematical reasons or can we experimentally prove it as well? do we simply know because we smash atoms together and count the ratios of up and down quarks?
thanks in advance
Last edited: