- #1
Karl G.
- 40
- 0
Homework Statement
From Gravitation by Misner, et al. Can anybody who has access to this text show me how to vary this functional from exercise 7.1, and using the principle of least value, derive an identity? The functional is I = [tex]\int[/L d[4][/SUP]]x, where L = -1/(\pi*8*G)*\eta[/\alpha\beta](\Phi)[/,\alpha](\Phi)[/,\beta] - \int m (e^\Phi) \delta([/x - z](\tau)) d\tau Vary with respect to \Phi. I apologize in advance for notation.
Homework Equations
Euler- Lagrange Eq'ns. I know variational methods, but this one perplexes me.