- #1
- 6,223
- 31
Homework Statement
Find the roots of the equation
[tex]z^3=-(4\sqrt{3})+4i[/tex]
giving your answers in the form [itex]re^{i\theta}[/itex], where r>0 and [itex]0\leq \theta<2\pi[/itex]
Denoting these roots by [itex]z_1,z_2,z_3[/itex], show that, for every positive integer k.
[tex]z_1^{3k}+z_2^{3k}+z_3^{3k}=3(2^{3k}e^{\frac{5}{6}k\pi i})[/tex]
Homework Equations
complex number formulas
The Attempt at a Solution
[tex]z^3=-(4\sqrt{3})+4i[/tex]
[tex]= z^3=8e^{\frac{5}{6}\pi i}[/tex][tex]z=2e^{\frac{5}{18}\pi i}[/tex]
[tex]z=2e^{(\frac{5}{18}\pi + \frac{2k}{3})i}[/tex] k=0,1,2
therefore the roots are
[tex]z=2e^{\frac{5}{18}\pi i},2e^{\frac{17}{18}\pi i},2e^{\frac{29}{18}\pi i}[/tex]
subbing the roots into what they want me to show[tex](2e^{\frac{5}{18}\pi i})^{3k}+(2e^{\frac{17}{18}\pi i})^{3k}+(2e^{\frac{29}{18}\pi i})^{3k}[/tex]
[tex]2^{3k}(e^{\frac{5k}{6}\pi i}+e^{\frac{17k}{6}\pi i}+e^{\frac{29k}{18}\pi i})[/tex]
[tex]2^{3k}e^{\frac{5}{6}\pi i}(1+e^{2k}+e^{4k})[/tex]
Now I am stuck.