How Do You Calculate Hydrostatic Force and Moments in Curved Apparatus?

In summary, the problem involves determining the hydrostatic force applied to AB when the water level is at 9cm and 12.8cm. A weight of 50g was added to balance the setup, and 260g and 460g were used as weights. The width of the container is 75mm. The moments are also needed to be calculated. The calculation for the force when the water level is at 9cm is 5.95N, acting at 2/3 of the height or 30mm from the center. The total moment is 515Nmm. For the 12.8cm water level, the calculated force is 6.02N, acting at 159mm from
  • #1
matthew_hanco
19
0
Using the picture added Q4, work out the hydrostatic force applied to AB when the water level is at 9cm and 12.8cm.

50g of weight was added to balance the setup.
And 260g and 460g were used respectively.

width of container was 75mm

Also need the moments

Heres what I've done

F when level of water is 9cm
= 0.09^2 x 0.075 x 9.81 x 1000
= 5.95N

Acting at 2/3 of height so 30mm or 172 from the centre.

total moment = (260 x 9.81) x202 = 515Nmm

I would use the same principal for the 12.8cm but i think that is totally wrong due to the curve in the apparatus.

Can anyone help?
 

Attachments

  • hydraulics.pdf
    38.4 KB · Views: 258
Physics news on Phys.org
  • #2
could really use some help?
 
  • #3
Pressure/force exerted by a stationary fluid is always normal to the wetted surface. Therefore any forces on the radii, outer or inner, pass through O. What does that say about any moment about O resulting from the curved surfaces?
 
  • #4
Are you suggesting that the pressure applied to the curved outersurface is equal to the pressure applied to the line AB. Obviously times by the leaver arm which is 202mm.

Also how would i calculate where the Resultant Force F would act, as for a straight line it would be 2/3 of the height, but I am not sure for the curved section.

Thanks for the help its greatly appreciated.
 
  • #5
No, I'm not saying that. All I am saying is that the pressure on the curved inner surfaces do not contribute to a moment about point O because their line of force passes through point O. The surface AB contributes to the moment, however. If you sum moments about A, the curved surfaces contribute complicating the problem.

You should be able to solve this problem by either of two approaches (assuming I perceive the problem correctly). You could compute the weight of the water in the semi-annular volume. Then find its center of gravity and determine the moment in that manner. This moment is balanced by the addition of weight.

Or you could solve it by determining the resultant force on AB, where it is applied, and the resulting moment that is balanced by weight addition.
 
  • #6
So as I am just taking moments about O, then the force applied by the mass should be equal to the force applied by the force on ab.

Would i then simply take 12.8cm and use it in the equation
0.128/2 * .128*.075 * 9.81 * 1000 = 6.02 N and would act at 159mm from 0.

then the moment equation would be 6.02 * 159 - 4.5 * 203 = 0
But when i calculate it it is 40Nmm out. the 6.02 is out.

Have i still done something wrong?
 
  • #7
I've worked out the case for a depth of 9 cm balanced by 260 g mass. You came up with 5.95N force. I don't compute that force.

Where is your center of pressure (Ycp) where the pressure force may be considered applied? The formula is:

Ycp = Icg/(Ycg*A) + Ycg

where

Icg is moment of inertia
A is area
Ycg is center of gravity

When I run the numbers for your first case I am off by less than 1% on the moment balance.
 
Last edited:
  • #8
OK I see your center of pressure for a depth of 9 cm so ignore my comment about center of pressure. Your force is incorrect.
 
  • #9
ive recalculated the force for 9cm

i get 9cm, using the formula, h/2 * h * w * g * p = F
where h =height, w = width g= 9.81 and p = 1000

so i get 0.09/2 * 0.09 * 0.075 * 9810 = 2.98N
Acting at 2/3 from top of water so 30mm
So the level arm turns out to be 172mm

Putting into the moment equation
FabD - FwZ = 0
Where Fab is the force acting on the line ab and Fw is the force of the mass
where D and Z are the respective lever arms

2.98 x 172 = 512.5 (FabD)
0.260 x 9.81 = 2.55 (Fw) 0.260kg is the mass added to balance the system, as the total weight is 0.310kg but 0.05Kg was needed to balance the system before the water is added.

There fore 2.55 x 203 = 517.65

i think this is right as 517.6 is roughly equal to 512.5.

What do you think?
 
  • #10
That's it. I also computed 2.98N.
 
  • #11
ok so now we have the 9cm correct what about the 12.8cm

From what you have said, i should just take the Force acting on AB and when calculated I am out by 40nmm which is a little too much, i mean it could be right but i feel i may have made a mistake.

So here's what i did using the same formula

0.128/ 2 * 0.128 *0.075* 9810 = 6.027N
acting at 2/3 from the top of the water
0.128/3 =0.043
0.202-0.043 = 0.159

Putting into the same equation FabD - FwZ = 0

FabD = 6.027* 159 = 958.30

Fw= 0.460*9.81 = 4.51
FwZ = 4.51 * 203 = 916.06

difference of 42.24 which is a little less than 5%

Im wondering if I've made an error.
 
  • #12
I worked out the second one where the liquid is 12.8 cm and was off on the moment by about 44 N-mm so I agree with your figures. Incidentally, I worked it this time by determining the weight of the water and its center of mass. I used xbar as the moment arm and the weight as the force. Gauss quadrature was implemented for the integrations.

So two methods give the same answer. I suspect an error in measurement.
 
  • #13
i guess that must be the case thankyou for all your help its being most appreciated. Could i trouble you to look at my other problem. It is the orifice question, although i just need confirming that i have done the right thing.
 

FAQ: How Do You Calculate Hydrostatic Force and Moments in Curved Apparatus?

1. What is a hydrostatic force problem?

A hydrostatic force problem is a type of physics problem that involves calculating the force exerted by a fluid on an object submerged in the fluid. It is based on the principles of hydrostatics, which is the study of fluids at rest.

2. How do you calculate the hydrostatic force on an object?

To calculate the hydrostatic force on an object, you need to know the density of the fluid, the depth of the object in the fluid, and the surface area of the object. The formula for calculating hydrostatic force is F = ρghA, where ρ is the density of the fluid, g is the acceleration due to gravity, h is the depth of the object, and A is the surface area of the object.

3. What are some common applications of hydrostatic force problems?

Hydrostatic force problems are commonly used in engineering and physics to design and analyze structures that are submerged in fluids, such as dams, ships, and submarines. They are also important in understanding the behavior of fluids in containers, such as tanks and pipes.

4. What are some challenges of solving hydrostatic force problems?

One of the main challenges of solving hydrostatic force problems is accurately determining the density and other properties of the fluid being studied. This can be difficult if the fluid is not uniform or if it changes in density at different depths. Another challenge is correctly accounting for the shape and orientation of the submerged object.

5. How can hydrostatic force problems be applied to real-world situations?

Hydrostatic force problems have many practical applications in various fields, such as civil engineering, naval architecture, and fluid mechanics. They can be used to design and analyze structures that are submerged in water, such as bridges, dams, and offshore platforms. They are also important in understanding and predicting the behavior of fluids in hydraulic systems, such as pumps and turbines.

Back
Top